рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Базис и размерность пространства

Базис и размерность пространства - раздел Математика, Список основных статей по линейной алгебре Так Как В Линейном Пространстве Векторы Можно Складывать И Умножать На Числа,...

Так как в линейном пространстве векторы можно складывать и умножать на числа, то из них можно составлять линейные комбинации и можно ввести понятия линейной зависимости и линейной независимости системы векторов так же, как это было сделано в разделе "Линейная зависимость векторов". На случай произвольного линейного пространства определения 10.14 и 10.15 переносятся дословно. Предложения 10.6, 10.7, 10.8 переносятся дословно вместе с доказательствами.

На основе линейной зависимости в линейном пространстве вводится определение базиса. Оно почти дословно совпадает с определением 10.16.

Определение 18.2 Базисом линейного пространства называется такая конечная упорядоченная линейно независимая система векторов, что любой вектор пространства является линейной комбинацией этих векторов.

В отличие от трехмерного пространства векторов, в некоторых линейных пространствах базис не существует.

Пример 18.2 Пусть -- линейное пространство всех многочленов с веществеными коэффициентами. Покажем, что в этом пространстве базис не существует.

Предположим противное. Пусть векторы образуют в этом пространстве базис.

Каждый вектор пространства -- это многочлен. Пусть

 
 
 
 


Из степеней многочленов выберем наибольшую и обозначим ее буквой . Возьмем многочлен . Так как и векторы образуют базис, то , где -- вещественные числа. Следовательно, является суммой многочленов степеней меньших, чем , и поэтому его степень должна быть меньше, чем . С другой стороны, по определению, многочлен имеет степень . Получили противоречие. Значит, предположение о существовании базиса неверно.

Теорема 18.1 В линейном пространстве любые два базиса содержат одинаковое число векторов.

Доказательство теоремы мы приводить не будем. Желающие могут найти его в любом учебнике по линейной алгебре, например в [1].

Определение 18.3 Линейное пространство , в котором существует базис, состоящий из векторов, называется -мерным линейным или векторным пространством. Число называется размерностью пространства и обозначается . Линейное пространство, в котором не существует базис, называетсябесконечномерным.

Примером бесконечномерного пространства является пространство всех многочленов с вещественными коэффициентами. Как показано в примере 18.2 в этом пространстве базис отсутствует.

Предложение 18.1 Пространство столбцов из элементов, являющихся вещественными числами, имеет рамерность .

Доказательство. Возьмем систему векторов

Покажем, что эта система линейно независима. Составим линейную комбинацию и приравняем ее к нулю:

Преобразуем левую часть:

Следовательно,

откуда , , . Итак, система векторов -- линейно независима.

Пусть -- произвольный вектор пространства, Очевидно, что

Следовательно, вектор является линейной комбинацией векторов . Тем самым доказано, что векторы образуют базис в пространстве столбцов из элементов. Размерность пространства равна числу векторов в базисе. Следовательно, пространство -- -мерное.

 

Пространство столбцов из элементов, являющихся вещественными числами, обозначается .

Предложение 18.2 Пространство столбцов из элементов, являющихся комплексными числами, имеет размерность .

Доказательство такое же, как и в предыдущем предложении. Это пространство обозначается .

Пример 18.3 Пространство решений однородной системы линейных уравнений имеет базис из решений, где -- число неизвестных, а -- ранг матрицы . Этим базисом служит фундаментальная система решений (см. определение 15.5 и теорему 15.3).


 

01.Образ и ядро линейного оператора. Ранг и дефект линейного оператора

 

Пусть - линейный оператор действующий в линейном пространстве V (комплексном или вещественном) Определение: Совокупность всевозможных векторов вида называется образом оператора A и обозначается ImA. Таким образом . Определение: Совокупность всевозможных векторов для которых называется ядром оператора A и обозначается KerA. Таким образом . Утверждение: образ и ядро линейного оператора А являются подпространствами линейного пространства V. Доказательство: В самом деле в силу линейности оператора А имеем: 1) тогда и т. к то и т. к. , то является подпространством пространства V. 2) отсюда . является подпространством пространства V. # Пример: Пусть V – n мерное комплексное или вещественное линейное пространство. 1) Тождественный оператор , при этом Ax = Ix = X, тогда ImA=ImI=V, KerA=KerI={θ} / ядро состоит из единственного нулевого элемента / 2) Нулевой оператор, тогда 3) Рассмотрим оператор дифференцирования на пространстве многочленов степени не выше N, тогда отсюда. Видно, что во всех приведенных примерах справедливо: , что не является случайным. Теорема (о сумме размерностей образа и ядра линейного оператора) : Пусть A - линейный оператор, действующий в линейном пространстве V. Тогда сумма размерностей образа и ядра оператора равна размерности данного линейного пространства, т. е. Доказательство: Пусть , причем Выберем в пространстве V произвольный базис . Поскольку по определению , то можно записать, что линейная оболочка, порождаемая совокупностью образов базисных векторов , причем , где R – максимальное число л. н.з. векторов в системе. Но координаты именно этих векторов стоят в столбцах матрицы линейного оператора А в базисе, поэтому . Рассмотрим ядро оператора А: . В выбранном базисе равенству соответствует однородная СЛАУ:, которая, как известно, имеет (N-R) л. н.з. решений, образующих ФСР. Поскольку неизвестными данной системы являются координаты векторов, составляющих KerA, то отсюда заключаем, что dim(KerA)=N-R. В результате получаем, что Определение: Размерность образа оператора называется рангом оператора, размерность ядра оператора называется дефектом оператора. Определение: Линейный оператор называется невырожденным, если в произвольном базисе (E) данного линейного пространства V Оператор А имеет невырожденную матрицу . Следствие: Если А – невырожденный линейный оператор, то его образ совпадает со всем пространством, в котором этот оператор действует. Доказательство: Если , то по предыдущей теореме запишем . ПоСвойству 40 невырожденных операторов (докажем позже в параграфе 12 главе 7) равенство возможно только при отсюда откуда . Т. к. , то отсюда следует, что . Определение: Подпространство L пространства V называется инвариантным относительно линейного оператора А, если . Теорема (об инвариантности образа и ядра линейного оператора): Образ и ядро линейного оператора А являются подпространствами инвариантными относительно оператора А. Доказательство: 1) Пусть , т. к. то и поэтому , т. е. подпространство ImA является инвариантным относительно оператора А. 2) Пусть . Тогда, т. у. а значит подпространство KerA инвариантно относительно оператора А.

 


Линейный оператор векторного пространства V задан матрицей А в некотором базисе . Найдите ядро и дефект линейного оператора , если

– Конец работы –

Эта тема принадлежит разделу:

Список основных статей по линейной алгебре

Базис и размерность векторного пространства Определение порождает линейно... Билинейное... Векторное пространство Определение для всех для всех...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Базис и размерность пространства

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Список основных статей по линейной алгебре
§ Аффинное пространство § Базис и размерность векторного пространства § Билинейное отображение § Векторное про

Точечно-векторная аксиоматика аффинного пространства
Определение 1. -мерным аффинным пространством над пол

Определение
Определение 1. Базисом1) ненулевого векторного пространства

Переход от одного базиса к другому
Пусть —

Определение
Пусть — ассоциативное коммутативное кольцо,

Билинейная форма
Пусть — ассоциативное коммутативное кольцо,

Матрица билинейной формы
В случае, когда и

Определение
Определение 1. Пусть — некоторое поле. Абелева группа1)

Подпространство векторного пространства
Определение 2. Непустое множество векторов векторного пространства

Факторпространство
Пусть — подпространство векторного пространства

Определение
Пусть — векторное пространство над полем

Двойственный базис
Предложение 1. Пусть — векторное пространство размерности

Жорданова матрица
Для произвольного поля определены матрицы специального вида с элементами из

Жорданова нормальная форма
Пусть — линейный оператор на конечномерном векторном пространстве

Корневые подпространства
Пусть — собственное значение линейного оператора

Определение
Пусть — ассоциативное коммутативное кольцо,

Определение
Пусть — векторное пространство над полем

Матрица квадратичной формы
Определение 2. Пусть — квадратичная форма на конечномерном векторном пр

Квадратичная форма на вещественном векторном пространстве
Пусть — конечномерноевекторное пространство над полем действительных чисел

Закон инерции квадратичных форм
Определение 1. Говорят, что квадратичная форма в базисе

Положительная определенность
Определение 3. Квадратичная форма называется невырожденной, если ее ранг равен размерности

Неопределенной, если она принимает как положительные, так и отрицательные значения.
Пример 1. Пусть имеет в некотором базисе

Линейная зависимость
Пусть — (левый) модуль над ассоциативным кольцом

Линейные комбинации. Линейная оболочка
Пусть — некоторое подмножество элементов из

Линейная зависимость
Определение 3. Набор элементов модуля

Определение
Определение 1. Линейное пространство над полем

Определение
Определение 1. Пусть — векторные пространства над полем

Частные случаи
Определение 3. Линейное отображение называется линейным оператором

Свойства линейного отображения
Определение 5. Ядром9) линейного отображения

Основные определения
Определение 1. Матрицей1) размера

Транспонирование
Пусть — матрица порядка

Сложение и умножение на скаляр
Пусть и

Умножение матриц
Пусть и

Определение
Определение 1. Пусть и

Определение
Определение 1. Многочлен минимальной степени, аннулирующий оператор

Определение
Пусть — линейный оператор с матрицей

Определитель
Пусть — квадратная матрица порядка

Свойства определителя
Предложение 1. Определитель квадратной матрицы и определитель транспонирова

Пересечение и сумма
Пусть и

Внутренняя прямая сумма
Определение 2. Пространство называется прямой суммой2

Внешняя прямая сумма
Пусть и

Горизонтальный и вертикальный ранг
Пусть — поле, и

Элементарные преобразования матрицы
Определение 3. Элементарными преобразованиями3) строк матрицы называются преобразования следующих трех типов: 1. перестановка двух строк,

Минорный ранг
Определение 5. Число называется минорным рангом5)

Определение
Пусть — (левый) модуль над ассоциативным кольцом

Скалярное произведение
Определение 1. Пусть — векторное пространство над полем

Евклидово пространство
Определение 2. Евклидовым векторным пространством2) называется векторное пространство над полем

Алгебраическое дополнение
Определение 3. Пусть — минор порядка

Теорема Лапласа
Теорема 1. (Теорема Лапласа) Зафиксируем в квадратной матрице

Решение.
Способ 1. Вычислим определитель по «правилу треугольника». .

Определители высших порядков
Задача 3. Вычислить определитель . Решение.

Собственные вектора и собственные значения
Определение 2. Ненулевой вектор из одномерного подпространства, инвариантного относительно

Характеристический многочлен
Определение 5. Характеристическим многочленом11) оператора

Правило Крамера
Задача 1. Решить систему линейных уравнений

Решение.
По определению ядро линейного оператора , или ker

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги