рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные определения.

Основные определения. - раздел Математика, Множества и операции над ними Множеством Называется Собрание, Совокупность Объектов, Объединенных По Какому...

МНОЖЕСТВОМ называется собрание, совокупность объектов, объединенных по какому-нибудь общему признаку, свойству.

Примеры:

Множество студентов данной учебной группы.

Множество планет солнечной системы.

Множество букв русского алфавита.

Множество натуральных чисел.

Математический смысл слова “множество” отличается от того, как оно используется в обычной речи. Так, в обычной речи понятие “множество” связывают с большим числом предметов, в математике же этого не требуется. Здесь могут рассматриваться множества, содержащие один объект, много объектов, несколько объектов или не содержащие ни одного объекта.

Объекты, из которых состоит множество, называются его элементами.

Остановимся на символике, обычно использующейся при обращении с множествами.

Множества обозначаются прописными (заглавными) буквами латинского алфавита (без индексов или с индексами). Например: B, C,…,X,Y,…,A1,B1,…

Элементы множества обозначаются строчными (малыми) буквами латинского алфавита. Например: b,c,…,x,y,…,a1,b1,…

В математике особую роль играют множества, элементами которых являются числа. Такие множества называются ЧИСЛОВЫМИ. Некоторые числовые множества имеют специальные обозначения, вводимые для удобства пользования:

N – множество всех натуральных чисел;

Z+ – множество всех целых неотрицательных чисел;

Z – множество всех целых чисел;

Q – множество всех рациональных чисел;

R – множество всех действительных чисел;

R+ - множество всех действительных положительных чисел.

По числу элементов, входящих в множество, множества делятся на три класса:

1 – конечные, 2 – бесконечные, 3 – пустые.

1. Если элементы множества можно сосчитать, то множество является конечным.

Пример 1.

Множество гласных букв в слове “математика” состоит из трёх элементов – это буквы “а”, “е”, “и”, причем, гласная считается только один раз, т.е. элементы множества при перечислении не повторяются.

2. Если элементы множества сосчитать невозможно, то множество бесконечное.

Пример 2.

Множество натуральных чисел бесконечно.

Пример 3.

Множество точек отрезка [0;1] бесконечно.

3. Множество, не содержащее ни одного элемента, называется пустым. Символически оно обозначается знаком Æ.

Пример 4.

Множество действительных корней уравнения x2 +1=0.

Пример 5.

Множество людей, проживающих на Солнце.

В математике часто приходится определять принадлежность данного элемента конкретному множеству.

Пример 6.

Число 5 - натуральное, т.е. утверждается, что число 5 принадлежит множеству натуральных чисел. Символически принадлежность множеству записывается с помощью знака Î. В данном случае символическая запись будет такой: 5 Î N. Читается: “5 принадлежит множеству натуральных чисел”.

Число 5,2 не принадлежит множеству натуральных чисел, т.к. не является натуральным числом. Символически отношение “не принадлежит” записывается с помощью знака Ï. Таким образом, здесь имеем: 5,2 Ï N

Читается: “5,2 не принадлежит множеству натуральных чисел”.

 

– Конец работы –

Эта тема принадлежит разделу:

Множества и операции над ними

Ведение... Множества и операции над ними Основные понятия о множествах Операции над множествами...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные определения.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Отношения между множествами.
Наглядно отношения между множествами изображают при помощи особых чертежей, называемых кругами Эйлера (или диаграммами Эйлера – Венна). Для этого множества, сколько бы они ни содержали эле

Пересечение множеств.
Пусть даны два множества: А={a; b; c; d} и B={c; d; e}.образуем новое множество Р, состоящее из всех элементов, принадлежащих одновременно и множеству А, и множеству В, т.е. Р={c;d}. Тогда говорят,

Объединение множеств.
Множества А и В входят в их объединение только один раз. Это вполне соответствует толкованию множества, принятому в математике: ни один элемент не может содержаться в множестве несколько раз.

Разность множеств.
Определение 6. Разностью двух множеств А и В называется множество, состоящее из всех тех и только тех элементов, которые принадлежат множеству А и не принадлежат множеству В.

Дополнение к множеству.
Определение 7. Пусть В Ì А. Множество всех элементов множества А, не принадлежащих множеству В, называют дополнением к множеству В и обозначают или А В. Если ясно, о

Прямое произведение множеств.
Определение 10. Прямым произведением, или декартовымпроизведением множеств и называется множество всех упорядоченных пар (a,b) таких, что aÎA и bÎB. При этом используют

Отрицание.
Отрицанием высказывания А называется новое высказывание, которое является истинным, если высказывание А ложно, и ложным, если высказывание А истинно. Отрицание высказывания А

Импликация.
Импликацией двух высказываний А, В называется новое высказывание, которое считается ложным, если А истинно, а В – ложно, и истинным во всех остальных случаях. Импликация высказывани

Эквиваленция.
Эквиваленцией (или эквивалентностью) двух высказываний А, В называется новое высказывание, которое считается истинным, когда оба высказывания А, В либо одновременно истинны, либо одновременно ложны

Квантор всеобщности.
Пусть Р(х) – предикат, определенный на множестве М. Под выражением понимают высказывание, истинное, когда Р(х) истинно для каждого элемента х из множества М, и ложное в противном случае. Это высказ

Квантор существования.
Пусть P(x) - предикат определенный на множестве М. Под выражением понимают высказывание, которое является истинным, если существует элемент , для которого P(x) истинно, и ложным – в противном случа

Понятие теоремы.
Рассмотрим с точки зрения введённых во второй и третьей главах понятие теоремы. Большинство теорем, встречающихся в школьном курсе математики, представляют собой высказывания в виде "

Обратные теоремы.
Для всякой теоремы вида «если А, то В» можно сформулировать обратное ей пред­ложение «если В, то А». Однако не для всякой теоремы предложение, ей обратное, также является те

Противоположные теоремы.
Для всякой тео­ремы, сформулированной в виде импликации АÞВ, мож­но составить противоположное предложение . Пред­ложение, противоположное данной теореме, может быть та

Закон контрапозиции.
Нам осталось рассмотреть соотношение между обратно-противоположными предложениями, т. е. предложениями вида АÞВ и . Имеет место следующая равносильность : АÞВ = - закон контрап

Описание переключательных схем с помощью логики высказываний.
Под переключательными схемами будем понимать схематическое изображение какого-либо устройства, содержащего только двухпозиционные переключатели 9или электрические контакты), т. е. переключатели, ко

Задачи на анализ и синтез релейно-контактных схем.
Пример 3. Упростить релейно-контактную схему и произвести ее анализ работы.   а) Для упрощения схемы записываем ее структурную формулу. б) Затем полученную фо

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги