рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Тема 2.2 Пределы и непрерывность

Тема 2.2 Пределы и непрерывность - раздел Математика, Раздел 1. Линейная алгебра Ключевые Понятия: Предел Функции, Предел Последовательности, Свойства ...

Ключевые понятия: предел функции, предел последовательности, свойства пределов; бесконечно малые и бесконечно большие величины.

Предел последовательности

Число a называется пределом последовательности x = {xn}, если для произвольного заранее заданного сколь угодно малого положительного числа ε найдется такое натуральное число N, что при всех n>N выполняется неравенство |xn - a| < ε.

Если число a есть предел последовательности x = {xn}, то говорят, что xn стремится к a, и пишут .

Чтобы сформулировать это определение в геометрических терминах введем следующее понятие.

Окрестностью точки x0 называется произвольный интервал (a, b), содержащий эту точку внутри себя. Часто рассматривается окрестность точки x0, для которой x0 является серединой, тогда x0 называется центром окрестности, а величина (ba)/2 – радиусом окрестности.

Итак, выясним, что же означает геометрически понятие предела числовой последовательности. Для этого запишем последнее неравенство из определения в виде

Это неравенство означает, что все элементы последовательности с номерами n>N должны лежать в интервале (a – ε; a + ε).

Следовательно, постоянное число a есть предел числовой последовательности {xn}, если для любой малой окрестности с центром в точке a радиуса ε (ε – окрестности точки a) найдется такой элемент последовательности с номером N, что все последующие элементы с номерами n>N будут находиться внутри этой окрестности.

Предел функции

Пусть функция y=f(x) определена в некоторой окрестности точки a. Предположим, что независимая переменная x неограниченно приближается к числу a. Это означает, что мы можем придавать х значения сколь угодно близкие к a, но не равные a. Будем обозначать это так x→a. Для таких x найдем соответствующие значения функции. Может случиться, что значения f(x) также неограниченно приближаются к некоторому числу b. Тогда говорят, что число b есть предел функции f(x) при x→a.

Введем строгое определение предела функции.

Функция y=f(x) стремится к пределу b при x→a, если для каждого положительного числа ε, как бы мало оно не было, можно указать такое положительное число δ, что при всех x ≠ a из области определения функции, удовлетворяющих неравенству |x-a|<δ, имеет место неравенство |f(x -b| < ε. Если b есть предел функции f(x) при x→a, то пишут или f(x)→b при x→a.

Проиллюстрируем это определение на графике функции. Т.к. из неравенства |x-a|<δ должно следовать неравенство |f(x)-b|<ε, т.е. при x(a-δ, a+δ) соответствующие значения функции f(x)(b-ε, b+ε), то, взяв произвольное ε>0, мы можем подобрать такое число δ, что для всех точек x, лежащих в δ – окрестности точки a, соответствующие точки графика функции должны лежать внутри полосы шириной , ограниченной прямыми y=b–ε и y=b+ε.

Несложно заметить, что предел функции должен обладать теми же свойствами, что и предел числовой последовательности, а именно и если при x→a функция имеет предел, то он единственный.

 

Бесконечно большие величины

Мы рассмотрели случаи, когда функция f(x) стремилась к некоторому конечному пределу b при x→a или x→∞.

Рассмотрим теперь случай, когда функция y=f(x) стремится к бесконечности при некотором способе изменения аргумента.

Функция f(x) стремится к бесконечности при x→a, т.е. является бесконечно большой величиной, если для любого числа М, как бы велико оно ни было, можно найти такое δ>0, что для всех значений хa, удовлетворяющих условию |x-a|<δ, имеет место неравенство |f(x)|>M.

Если f(x) стремится к бесконечности при x→a, то пишут или f(x)→∞ при x→a.

Сформулируйте аналогичное определение для случая, когда x→∞.

Если f(x) стремится к бесконечности при x→a и при этом принимает только положительные или только отрицательные значения, соответственно пишут или

 

Вопросы для самоконтроля:

1. Сформулируйте определение предела последовательности.

2. Сформулируйте определение предела функции в точке.

3. Укажите, какая функция называется бесконечно большой величиной.

 


– Конец работы –

Эта тема принадлежит разделу:

Раздел 1. Линейная алгебра

Раздел Математический анализ Тема Пределы и непрерывность Предел последовательности... Раздел Дифференциальное исчисление Тема... Тема Приложение производной...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Тема 2.2 Пределы и непрерывность

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Тема 1.1 Матрицы и определители
Ключевые понятия: определение матрицы. Действия над матрицами, их свойства. Определители 2-го и 3-го порядка, вычисление определителей. Определители n-го порядка, свойства определителей. Мин

Тема 1.2 Системы линейных уравнений
Ключевые понятия: общий вид системы линейных алгебраических уравнений (СЛАУ), матрица системы, решение системы; правило Крамера решения СЛАУ, метод Гаусса Решения СЛАУ. Систем

Тема 3.1 Производная функции
Ключевые понятия: производная функции в точке; геометрический смысл производной, уравнение касательной, уравнение нормали к кривой; физический смысл производной; формулы и правила дифференци

Определение. Точки максимума и минимума функции называются точками экстремума.
Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то п

Тема 4.1 Неопределенный интеграл
Ключевые понятия: первообразная функции, неопределенный интеграл и его свойства, таблица неопределенных интегралов.   Первообразная функция.

Тема 4.2 Определенный интеграл
Ключевые понятия: понятие определенного интеграла, свойства определенного интеграла, вычисление площади криволинейной трапеции с помощью определенного интеграла, формула Ньютона-Лейбница.

Геометрическая интерпретация комплексного числа
Всякое комплексное число z = (x, y) можно изобразить как точку на плоскости с координатами x и y. Плоскость, на которой изображаются комплексные числа, называется

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги