рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Абсолютно и условно сходящиеся ряды

Абсолютно и условно сходящиеся ряды - раздел Математика, Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц Ряд Называется Абсолютно Сходящимся, Если Сх-Ся Как Сам Данн...

Ряд называется абсолютно сходящимся, если сх-ся как сам данный ряд, так и ряд составленный из абсолютных величин его членов.

Ряд называется условно сходящимся, если сам данный ряд сх-ся, а ряд, составленный из абсолютных величин его членов рас-ся.

Св-ва абсолютно и условно сходящихся рядов существенно отличаются, так абс. Сходящиеся ряды напоминают конечные суммы, их можно складывать, умножать и т.д., а вот условно сходящиеся ряды этими св-вами не обладают.

1-1/2+1/3-1/4…. Условно сх-ся.

48. Условия разложения функций в степенной ряд. Ряд Маклорена. Разложение в ряд Маклорена функции у=еx (вывод). Интервал сходимости полученного ряда.

Св-во степ.рядов: Пусть ф-ция f(x) явл-ся суммой степ.ряда,т.е. f(x)=n=0cnxn. На любом отрезке [а;b], целиком принадлежащем интервалу сх-ти (-R;R), ф-ция f(x) явл-ся непрерывной, а след-но, степ.ряд можно почленно интегрировать на этом отрезке:

аb f(x)dx = аbc0dx + аbc1xdx + … + аbcnxndx +…

Кроме того, в интервале сх-ти степ.ряд можно дифференцировать:

f’(x) = c1 + 2c2x + 3c3x2 + ... + ncnxn-1 + ...

После интегрирования или дифференцирования ряды имеют тот же радиус сх-ти R.

Ряд Маклорена а(х) = а(0) + f’(0)х + ((f’’(0))/2!)х2 + ((f’’’(0))/3!)x3 + .. + ((f(n)(0))/n!) xn + ..

Так же для числовых рядов, сумму f(x) ряда Маклорна можно представить в виде

f (x)=S n (x) + r n (х) ,где Sn(x)- n-я частичная сумма ряда; rn(x) - n-й остаток ряда.

Разложение в ряд Маклорена ф-ции у=ех.

1. у=ех

Имеем а(х) = f’(х) = f’’(х) = .. = f(n)(x) = ex

f(0) = f’(0) =f’’(0) = .. = а(n)(0) = e0=1.

По ф-ле ех= 1 + х + х2/2! + х3/3! + … + хn/n! + …

Область сх-ти ряда (-∞;∞).

50.Разложение в ряд Маклорена функции y= (1+x)m Вывод. Интервал сходимости полученного ряда.

y= (1+x)m, где m – любое действительное число

f(x) = (1+x)m

f’(x) = m+(1+x)m-1

f”(x) = m(m-1)(1+x)m-2

f”’(x) = m(m-1)(m-2)(1+x)m-2

f(n)(x) = m(m-1)….(m-n+1)(1+x)m-n

при x=0

f(0) = 1

f’(0) = m

f”(0)= m(m-1)

f”’(0)= m(m-1)(m-2)

f(n) (0) = m(m-1)….(m-n+1)

 

(1+x)m = 1+mx+m(m-1)/2!x2 + m(m-1)(m-2)/3!x3 +…..+ m(m-1)(m-n+1)/n!xn

Интервал сх-ти ряда (-1;1)

 

– Конец работы –

Эта тема принадлежит разделу:

Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц

Матрицей размера mxn наз ся прямоуг таблица чисел сост из n строк и m столбцов Эл ты м цы числа составл м цу М цы обознач прописными загл б ми... Виды м цы м ца вектор столбец м ца сост из одного столбца... Трансп м цы это смена местами строк и ст в с сох м порядка следования эл тов А исходная А Ат транспонир Если...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Абсолютно и условно сходящиеся ряды

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Линейная независимость столбцов (строк) матрицы. Теорема о ранге матрицы.
Линейная зависимость и независ.строк м-цы.Расм.прямоуг.м-цы Аmxn l1=(a11,a12,a13,a14,..,a1n) – 1-я строка; l2=(

Собственные векторы и собственные значения матрицы. Характеристическое уравнение матрицы.
Опр:В-р Х наз-ся собственным в-ром квадр.м-цы А, если он не нулевой и удовлетворяет ур-еАnx1* Х

Ф-лы Крамера решения с-м из n ур-ний с n неизв.
Рассм.сист.из n ур-й с n незв.,которая в матричном виде м.б. записана АnxnХnx1=Вnx1. Обозначим опред-ль м-цы системы |А|=^

Элементарная ф-ция.
Опр:Эл.ф-ция – составленная из основных элементарных (константа,степенная,логарифм. и т..д.) при помощи алгебраических действий или при помощи конечного числа опер

Уравнение линии на плоскости. Точка пересечения двух линий. Основные виды уравнений прямой на плоскости (одно из них вывести).
Опр. Урав-ем линии(кривой) на плоскости Oxy наз-ся урав-е, кот.удовлетворяют координаты x и y каждой точки данной линии и не удовлет.координаты любой точки, не лежащей на этой лини

Признаки существования предела
Теорема1.Если числовая последовательность{ an } монотонна и ограниченна, то она имеет предел. Теорема2.Если в некоторой окрестности точки х

Св-ва БМ величин
1.алгебраическая сумма конечного числа БМ величин есть величина БМ 2.произведение БМ величины на ограниченную функцию есть величина БМ 3.

Теорема о связи между БМ и ББ величинами
1.Если функция имеет при x→х0 (x→∞.),предел, равный числу А, то эту функцию можно представить в виде суммы, этого числа А и БМ α(

Второй замеч.предел.
Рассматривается числовая послед. {an} an=(1+1/n)n. Данная послед-ть монотонно возрастает и ограничена. а1=2, а2=2,25, а3&#

Непрерывность функции на отрезке
Функция y=f(x) непрерывна на [a.b], если непрерывна в каждой точки этого отрезка Свойства функции y=f(x) непрерывна на [a.b] 1.Если функция y=f(x

Связь между дифференцируемостью и непрерывностью функции.
Если функция y=f(x) дифференцируема в т.х0 , то она непрерывна в этой точке. Док-во. Согласно определению производной y’= lim ∆y/∆x ∆x

Основные правила дифференцирования функций одной переменной (одно из этих правил доказать).
Осн.правила диф-ния ф-ции одной переменной: 1.Производная постоянной равна нулю,т.е. с’=0. 2.Произв.а

Формулы производных основных элементарных функции.
1.С’ = 0 2.x’=1 3.(u+v)’=u’+v’ 4.(uv)’=u’v+uv’ 5.(cu)’= cu’

Производная сложной функции
Пусть y=f(u) и u=φ(x) – дифференцируемые функции от своих аргументов, тогда производная сложной функции y=f (φ(x) существует и равна производной данной функции но промежуточному аргументу

Теоремы Ролля и Лагранжа (без доказательства). Геометрическая интерпретация этих теорем.
Теорема Ролля. Пусть ф-ция y=f(x) удовлетворяет след-м усл-ям: 1)непрерывна на отр.[а;b]; 2)дифференцируема на инт-ле(а;b); 3)на концах отрезк

Теорема Лагранжа.
Пусть ф-ция y=f(x) удовлетвор.след-м усл-ям: 1)непрерывна на отр. [а;b]; 2)дифференцируема на инт-ле(а;b); Тогда внутри отрезка сущ-ет по крайней мере одна такая т

Достаточные признаки монотонности функции (один из них доказать).
Тео-ма (достаточное условие возр.фун-и). Если производная диф-мой фун-и положительна внутри некоторого промежутка Х, то она возр.на этом промежутке.Док-во:Рас-трим

Опр.экстремума ф-ции одной пер-ной.
Экстремум-это максимум и минимум ф-ции. Опр1:Точка х0 наз-ся точкой максимумаф-ции f(x),если в некоторой окрестност

Необходимое усл-е экстремума.
Для того, чтобы ф-ция y=f(x) имела экстремум в точке х0, необходимо, чтобы её производная в этой точке равнялась 0 (f’(x0)=0) или не существовала. Точки, в кот

Исследовать и построить график
у = е 2х-х2 1. d (у)= (-∞ж+∞) 2. е 2х - х2= е-х2 = е-∞=0 d =0- ГА 3.

Неопределенный интеграл
Рассмотрим дифференцируемые функции переменной U=U(x) и V=V(x) Т.к. d(uv) = (uv)’dx=u’vdx+uv’dx= du*v+u*dv, то проинтегрируем по переменной х это равенство и учтем, что интеграл с

Определенный интеграл как предел интегральной суммы. Свойства определенного интеграла.
Опр. Пусть предел интегральной суммы при стремлении max дельта хi к нулю существует, конечен и не зависит от способа выбора точек. Тогда этот предел называется о

Теорема о производной определенного интеграла по переменному верхнему пределу. Формула Ньютона—Лейбница.
Теорема.Производная интеграла от непрерывной функции по переменному верхнему пределу равна подынтегральной функции при значении верхнего предела. Φ(x)= x&#

Понятие о дифференциальном уравнении. Общее и частное решения. Задача Коши. Задача о построении математической модели демографического процесса.
Опр. Дифференциальным уравнением называется уравнение, связывающие искомую функцию одной или нескольких переменный, эти переменные и производные различных порядков данной фун-и.

Необходимый признак сходимости.
Тео-а.Если числовой ряд сх-ся, то предел его общего члена Un при n→∞,равен 0 lim Un=0 n→∞, lim Un=lim (Sn-S

Гармонический ряд и его расходимость (доказать).
1+1/2+1/3+...+1/n+... – гармонический ряд. Док-во:lim при n стремящимся к беско-ти Un=lim 1/n = 0; S2n=1+1/2+1/3+…+1/n+1/n+1 +…+1/2n. Sn

Признак Лейбница
Ряд a1-a2+a3-a4+an an>0 Ряд сх-ся , если выполнены 2 усл 1. члены ряда монотонно убывают по абсолютной величин

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги