рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Свойства обратной матрицы

Свойства обратной матрицы - раздел Математика, 5. Обра́тная Ма́трица — Такая Матрица A...

5. Обра́тная ма́трица — такая матрица A−1, при умножении на которую, исходная матрица A даёт в результате единичную матрицу E:

Свойства обратной матрицы

· , где обозначает определитель.

· для любых двух обратимых матриц и .

· где обозначает транспонированную матрицу.

· для любого коэффициента .

· Если необходимо решить систему линейных уравнений , (b — ненулевой вектор) где — искомый вектор, и если существует, то . В противном случае либо размерность пространстварешений больше нуля, либо их нет вовсе.

[править]Способы нахождения обратной матрицы

Если матрица обратима, то для нахождения обратной матрицы можно воспользоваться одним из следующих способов:

[править]Точные (прямые) методы

[править]Метод Гаусса—Жордана

Возьмём две матрицы: саму A и единичную E. Приведём матрицу A к единичной матрице методом Гаусса—Жордана. После применения каждой операции к первой матрице применим ту же операцию ко второй. Когда приведение первой матрицы к единичному виду будет завершено, вторая матрица окажется равной A−1.

При использовании метода Гаусса первая матрица будет умножаться слева на одну из элементарных матриц (трансвекцию или диагональную матрицу с единицами на главной диагонали, кроме одной позиции):

.

.

Вторая матрица после применения всех операций станет равна , то есть будет искомой. Сложность алгоритма — .

[править]С помощью матрицы алгебраических дополнений

 

— транспонированная матрица алгебраических дополнений;

Полученная матрица A−1 и будет обратной. Сложность алгоритма зависит от сложности алгоритма расчета определителя Odet и равна O(n²)·Odet.

Иначе говоря, обратная матрица равна единице, делённой на определитель исходной матрицы и умноженной на транспонированную матрицу алгебраических дополнений элементов исходной матрицы.

7. Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно). Назван по имени Габриэля Крамера (1704–1752), придумавшего метод.

Для системы линейных уравнений с неизвестными (над произвольным полем)

 

с определителем матрицы системы , отличным от нуля, решение записывается в виде

 

(i-ый столбец матрицы системы заменяется столбцом свободных членов).
В другой форме правило Крамера формулируется так: для любых коэффициентов c1, c2, …, cn справедливо равенство:

 

В этой форме формула Крамера справедлива без предположения, что отлично от нуля, не нужно даже, чтобы коэффициенты системы были бы элементами целостного кольца (определитель системы может быть даже делителем нуля в кольце коэффициентов). Можно также считать, что либо наборы и , либо набор состоят не из элементов кольца коэффициентов системы, а какого-нибудьмодуля над этим кольцом. В этом виде формула Крамера используется, например, при доказательстве формулы для определителя Грама и Леммы Накаямы.

[править]Пример

Система линейных уравнений:

 

Определители:

 

 

 

Решение:

 

Пример:

 

Определители:

 

 

 

 

 

 

Свойства линейных операций над векторами

 

Сложение векторов и умножение вектора на число называются линейными операциями над векторами. Для любых векторов , , и любых действительных чисел справедливы равенства:

 

 

В линейной алгебре линейная зависимость — это свойство, которое может иметь подмножество линейного пространства. Для этого должна существовать нетривиальная линейная комбинация элементов этого множества, равная нулевому элементу. Если такой комбинации нет, то есть коэффициенты единственной такой линейной комбинации равны нулю,множество называется линейно независимым.

В векторы , и линейно независимы, так как уравнение

 

имеет только одно, тривиальное, решение. Векторы и являются линейно зависимыми, так как

 

а значит

 

 

10.Ба́зис (др.-греч. βασις, основа) — множество таких векторов в векторном пространстве, что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого множества — базисных векторов.

 

П.1. Базис на прямой, на плоскости и в пространстве.

Определение. Любое конечное множество векторов называется системой векторов.

Определение. Выражение , где называется линейной комбинацией системы векторов , ачисла называются коэффициентами этой линейной комбинации.

 

П.2. Разложение вектора по базису.

Определение. Пусть – произвольный вектор, – произвольная система векторов. Если выполняется равенство

, (1)

то говорят, что вектор представлен в виде линейной комбинации данной системы векторов. Если данная система векторов является базисом векторного пространства, то равенство (1) называется разложением вектора по базису .

 

Размерность векторного пространства.

Обозначение: – размерность векторного пространства V. Таким образом, в соответствие с этим и предыдущими определениями, имеем: 1) – векторное пространство векторов прямой L.

Определения размерности и базиса

Базисом n-мерного линейного пространства называется упорядоченная совокупность линейно независимых векторов (базисных векторов). Теорема 8.1 о разложении вектора по базису. Если — базис n-мерного…  

Линейные подпространства линейных пространств

Ясно, что K U - линейное пространство относительно тех же операций сложения элементов и умножения на элементы из поля K, что и в линейном… Если U - линейное подпространство в конечномерном линейном пространстве KV, … Если K U - линейное подпространство линейного пространства K V, и , то K U=K V. Действительно, если {u1,...,un}…

Сумма линейных подпространств

  также является линейным подпространством. Действительно, если , , , …  

– Конец работы –

Используемые теги: Свойства, обратной, матрицы0.061

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Свойства обратной матрицы

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц
Матрицей размера mxn наз ся прямоуг таблица чисел сост из n строк и m столбцов Эл ты м цы числа составл м цу М цы обознач прописными загл б ми... Виды м цы м ца вектор столбец м ца сост из одного столбца... Трансп м цы это смена местами строк и ст в с сох м порядка следования эл тов А исходная А Ат транспонир Если...

Понятие матрицы. Виды матрицы. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц.
а Матрицей размера m times n наз прямоугольная таблица сост из m строк и n столбцов... а а а а n... А a a a a n aij m times n aij m times n...

Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц
Две матрицы считаю равными если совпадают их размеры и равны соответствующие элементы...

Понятие матрицы. Виды матриц. Транспонирование матрицы. Равенство матриц. Алгебраические операции над матрицами: умножение на число, сложение, умножение матриц
Общая схема исследования функций и построения их графиков... Общая схема исследования функций и построение их графиков Пример...

Матрицы. Основные определения – прямоугольная, квадратная, диагональная, треугольная, нулевая и единичная матрицы. Сложение матриц и его свойства
Определение Матрицей размера m times n над полем Р называется прямоугольная таблица состоящая из n строк и m столбцов следующего вида... где aij P i j... Определение Квадратной матрицей n го порядка над полем P называется матрица размера n times n над полем P...

Обратная матрица и её свойства
Линейные операторы их матрицы и простейшие свойства... Def Пусть линейное пространство над полем Пусть задана функция называется... свойство аддитивности оператора...

Обратная матрица и её свойства
Линейные операторы их матрицы и простейшие свойства... Def Пусть линейное пространство над полем Пусть задана функция называется... свойство аддитивности оператора...

Матрицы. Порядок матрицы. Диагональная, треугольная и единичная матрица
Определители Определители и порядков... На дополнительном листе... Вычисление определителей порядка выше Обратная...

Тип ячейки определяет строение и свойства кристалла в целом, а свойства каждого из этих кристаллов определяет свойства всего кристалла в целом
Кристаллическое строение металлов... Металлы Ме являются поликристаллическими веществами т е они состоят из... Кристаллическое состояние твердое состояние вещества...

« Сравнение иммобилизирующих свойств различных матриц по отношению к захораниваемым радиоактивным отходам»
Стоимость сырья и материалов используемых в этих технологиях тоже достаточно высока. Исходя из всего вышеперечисленного, разработка новых методов захоронения… Радиоактивные отходы это изделия, материалы, вещества и биологические объекты, загрязненные радиоактивными нуклидами…

0.034
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам