Нормы векторов и матриц

Приведем определения норм векторов и матриц [1]. Пусть задан вектор x= (x1, x2, …, xn)T. Наиболее часто для векторов используются следующие нормы:

 

(3.1)

(3.2)

(3.3)

 

Норма (3.3) порождена скалярным произведением векторов

 

.

 

Для скалярного произведения справедливы следующие соотношения:

 

.

 

Если A симметричная матрица, то (Ax, y) = (x, Ay).

Определение 3.1. Нормой матрицы A называется число

 

. (3.4)

 

Согласованные с нормами векторов (3.1) — (3.3) нормы матриц определяются формулами

 

(3.5)

(3.6)

(3.7)

 

Здесь — собственные значения матрицы ATA, которая является симметричной. Чтобы обосновать формулу (3.7) рассмотрим определение нормы матрицы (3.4):

 

 

Можно доказать [1], что для симметричной матрицы B верно соотношение

, (3.8)

 

где λi — собственные значения матрицы B. Отсюда следует формула (3.7).

Пример 3.1. Вычислить нормы ||x||1, ||x||2, ||x||3 вектора x= (1, 2, – 3)T.

Решение. Пользуясь определениями норм (3.1) — (3.3), вычислим

 

Пример 3.2. Вычислить нормы ||A||1, ||A||2, ||A||3 матрицы

 

 

Решение. По формулам (3.5), (3.6) находим нормы матриц

 

 

Чтобы вычислить норму матрицы по формуле (3.7) необходимо найти собственные значения матрицы, полученной умножением транспонированной матрицы AT на данную матрицу A:

 

.

 

Не вдаваясь пока в подробности методов вычисления собственных значений матриц, вычислим в программе Mathcad собственные значения матрицы с помощью функции eigenvals:

 

 

 

Теперь мы можем вычислить норму матрицы по формуле (3.7):

 

 

Определение 3.2. Две нормы ||x||α и ||x||β называются эквивалентными, если существуют постоянные γ1 и γ2 такие, что при всех x ≠ 0 справедливы соотношения

||x||α/||x||β ≤ γ1, ||x||β /||x||α ≤ γ2.

 

Нормы ||x||1, ||x||2, ||x||3 эквивалентны между собой, так как выполняются неравенства [1]

||x||1 ≤ ||x||3 ≤ ||x||2n||x||1.

 

Из эквивалентности норм ||x||1, ||x||2, ||x||3 следует, что, если последовательность векторов сходится по одной из этих норм, то она сходится и по остальным нормам.

Ниже мы будем подразумевать под нормой ||x|| одну из указанных норм, а при необходимости конкретизировать, какую именно. При этом будем под нормой матрицы подразумевать норму, согласованную с нормой вектора.