рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Собственные числа и собственные векторы матрицы

Собственные числа и собственные векторы матрицы - раздел Математика, Вычислительные методы линейной алгебры Приведем Основные Определения И Теоремы, Необходимые Для Решения Практических...

Приведем основные определения и теоремы, необходимые для решения практических задач вычисления собственных чисел и собственных векторов матриц.

Определение 3.5. Собственным числом (или собственным значением) квадратной матрицы A называется число λ такое, что система уравнений

Ax = λx (3.35)

имеет ненулевое решение x. Это решение называется собственным вектором матрицы A, соответствующим собственному значению λ.

Собственный вектор определяется с точностью до постоянного множителя, — если x удовлетворяет (3.35), то и cx также является решением (3.35).

Преобразуем систему (3.35) к виду (A – λE)x = 0, где E — единичная матрица. Так как система линейных однородных уравнений имеет ненулевые решения лишь тогда, когда определитель матрицы равен нулю, получим уравнение для определения собственных значений

det(A – λE) = 0, (3.36)

которое называется характеристическим или вековым уравнением.

Если раскрыть определитель, то получим в левой части (3.36) многочлен n-й степени, корнями которого являются собственные значения матрицы A. На практике, при больших порядках n матрицы, задача раскрытия определителя (3.36) является сложной. Как известно из алгебры, многочлен n-й степени имеет n корней (действительных или комплексных), если кратные корни учитывать столько раз, какова их кратность.

Пример 3.9. Найти собственные значения и собственные векторы матрицы

.

Решение. Составим характеристическое уравнение и решим его:

 

 

Найдем собственные векторы, решая системы уравнений.

 

 

Отсюда следует, что x3 — произвольное число. Выберем x3 = 1, тогда
получим собственный вектор x1 = (0, 0, 1)T, соответствующий собственному значению λ1 = 2.

 

 

Первое и второе уравнения оказались одинаковыми, мы получили одно уравнение с двумя неизвестными. Пусть x2 = 1, тогда x1 = –0,618 и второй собственный вектор равен x2 = (–0,618; 1; 0)T.

 

 

Аналогично предыдущему, пусть x1 = 1, тогда x2 = 0,618 и третий собственный вектор равен x3 = (1; 0,618; 0)T.

Нормируем найденные векторы, т.е. разделим каждый вектор на его длину:

Правильность вычислений можно проверить в программе Mathcad с помощью функций eigenvals(A) и eigenvecs(A):

 

 

 

Как видим, результаты ручного расчета практически совпадают со значениями, полученными в программе Mathcad.

Проверьте самостоятельно, что найденные собственные векторы взаимно ортогональны, т.е. при i k равно нулю скалярное произведение .

Вычислить собственные значения матрицы в общем случае труднее, чем найти при известных собственных значениях соответствующие собственные векторы. В некоторых частных случаях собственные значения вычисляются легко. Например, если матрица диагональная или треугольная, то определитель равен произведению диагональных элементов и поэтому собственные значения равны диагональным элементам. Нетрудно вычислить собственные значения для трехдиагональной матрицы, а также для почти треугольной матрицы.

Для диагональной матрицы собственному значению λi = aii отвечает единичный собственный вектор xi = (0, …, 1, …,0)T, у которого i-я компонента равна 1, а остальные компоненты равны 0.

Теорема 3.5.Собственные значения симметричной матрицы с действительными элементами действительны, а собственные векторы, соответствующие различным собственным значениям, взаимно ортогональны.

Теорема 3.6. Если λmin и λmax — наименьшее и наибольшее собственные значения действительной симметричной матрицы A, то для любого вектора x справедливо неравенство

 

λmin(x, x) ≤ (Ax, x) ≤ λmax(x, x) (3.37)

 

Определение 3.6. Действительная симметричная матрица A называется положительно определенной, если для любого вектора x ≠ 0 выполняется условие

(Ax, x) > 0 (3.38)

Теорема 3.7.Действительная симметричная матрица A является положительно определенной тогда и только тогда, когда все её собственные значения положительны.

Теорема 3.8(критерий Сильвестра). Для того чтобы действительная симметричная матрица A = [aij] была положительно определенной необходимо и достаточно, чтобы все главные диагональные миноры её определителя были положительны:

 

(3.39)

 

Теорема 3.9(теорема Перрона). Если все элементы квадратной матрицы положительны, то её наибольшее по модулю собственное значение положительно и не является кратным, а соответствующий собственный вектор имеет положительные координаты.

Рассмотримитерационный методопределения наибольшего по модулю собственного значения и соответствующего собственного вектора матрицы A, который запишем в виде следующего алгоритма [7]:

– Конец работы –

Эта тема принадлежит разделу:

Вычислительные методы линейной алгебры

Вычислительные методы линейной алгебры изучают численные методы решения следующих задач... Решить систему линейных алгебраических уравнений СЛАУ... Вычислить определитель квадратной матрицы A...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Собственные числа и собственные векторы матрицы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Нормы векторов и матриц
Приведем определения норм векторов и матриц [1]. Пусть задан вектор x= (x1, x2, …, xn)T. Наиболее час

Решение систем линейных алгебраических уравнений
Теоретические условия существования и единственности решения систем линейных уравнений известны — главный определитель не должен быть равен нулю. Тогда решение можно найти по правилу Крамера

Метод Гаусса для решения систем линейных уравнений
Пусть требуется решить систему n линейных алгебраических уравнений с n неизвестными:  

Алгоритм метода Гаусса с выбором главного элемента по столбцам.
1. Для m = 1, 2, …, n – 1 выполним преобразования: Найдем максимальный по абсолютной величине элемент в m-ом столбце. Пусть это будет элемент aim. Ес

Итерационный метод
Запишем систему уравнений (3.9) в виде   Ax = b, (3.21) где A — матрица коэффициентов, а b

Метод Зейделя
Пусть требуется решить систему уравнений (3.1):   (3.25)

Погрешность решения и обусловленность системы уравнений
Рассмотрим влияние погрешности правой части и свойств матрицы системы линейных уравнений на погрешность решения. Пусть правая часть системы задана приближенно, с погрешностью η:  

Вычисление определителя и обратной матрицы
Вычисление определителя матрицы является классическим примером задач, для решения которых важно найти эффективные алгоритмы. При непосредственном раскрытии определителя квадратной матрицы

Алгоритм определения наибольшего по модулю собственного значения и соответствующего собственного вектора матрицы с положительными элементами.
1. Зададим начальное приближение x0 к собственному вектору; k = 0; 2. Вычисляем следующие приближения xk

Метод скалярных произведений
Рассмотрим метод скалярных произведений [7] для определения наибольшего собственного значения и соответствующего собственного вектора действительной матрицы A. Теорема 3.10.

Алгоритм метода скалярных произведений.
1. Зададим начальные приближения: x0 — к собственному вектору матрицы A и y0 = x0 — к

Алгоритм вычисления очередного (m + 1)-го собственного значения и соответствующего собственного вектора.
0. Выберем начальное приближение ; k = 0; 1. Вычисляем k-е прибл

Задачи для самостоятельного решения.
Решить систему линейных уравнений Ax = b в электронных таблицах методом Гаусса. Вычислить определитель матрицы A методом Гаусса. Найти обратну

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги