рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Преобразование тригонометрических выражений.

Преобразование тригонометрических выражений. - раздел Математика, Арифметические вычисления. Проценты   1º. На Плоскости Xoy Рассмотрим Окружность С Цент...

 

1º. На плоскости xOy рассмотрим окружность с центром в начале координат и радиусом, равным 1. На единичной окружности отметим точку A(1;0). Радиус OA называют начальным радиусом. При повороте начального радиуса на угол α около центра О точка А(1;0) перейдет в некоторую точку М(x;y). Заметим, что поворот можно осуществить по часовой стрелки (угол поворота положителен) или против часовой стрелки (угол поворота отрицателен).

Косинусом угла α называется абсцисса точки М: .

Синусом угла α называется ордината точки М: .

Тангенсом угла α называется отношение ординаты точки М к ее абсциссе: .

Котангенсом угла α называется отношение абсциссы точки М к ее ординате: .

являются тригонометрическими функциями аргумента α.

2º. Единицами измерения величины угла являются градус и радиан.

Если начальный радиус окружности совершит один полный оборот, то получится угол, равный 360˚ или 2π радиан.

Связь между градусной и радианной мерами измерения угла: рад.

Из этой формулы следует:

а) ; б) ; в) ; г) ; д) и т.д.

3º. Свойства тригонометрических функций:

Функции - нечетные функции:

.

Функция - четная: .

Функции - периодические с наименьшим периодом 2π:

.

Функции - периодические с наименьшим периодом π:

.

4º. Основное тригонометрическое тождество.

Согласно теореме Пифагора (“в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы”) координаты любой точки М(x;y) единичной окружности удовлетворяют уравнению: . Отсюда:

где (10.1)

Из этой формулы следует:

а) ; б) .

5º. Основные соотношения между тригонометрическими функциями:

, (10.2)

, (10.3)

, (10.4)

, (10.5)

. (10.6)

6º. Формулы сложения аргументов:

, (10.7)

, (10.8)

. (10.9)

7º. Формулы двойного аргумента:

, (10.10)

, (10.11)

. (10.12)

8º. Формулы понижения степени синуса и косинуса:

. (10.13)(10.14)

9º. Преобразование суммы и разности одноименных тригонометрических функций в произведение:

, (10.15)

, (10.16)

, (10.17)

. (10.18)

10º. Преобразование произведения тригонометрических функций в сумму:

, (10.19)

, (10.20)

. (10.21)

11º. Выражение тригонометрических функций через тангенс половинного аргумента.

При доказательстве тождеств, решении тригонометрических уравнений и т.п. часто возникает необходимость выразить все 4 тригонометрические функции через какую-нибудь одну функцию f(x). Для этого пользуются следующими формулами:

а) , (10.22)

б) , (10.23)

в) . (10.24)

12º. Формулы приведения. Это соотношения, при помощи которых значения тригонометрических функций аргументов выражают через тригонометрические функции угла α. Все формулы приведения можно свести в следующую таблицу:

Аргумент t   Функция
sin t cos α cos α sin α - sin α -cos α -cos α -sin α sin α
cos t sin α -sin α -cos α -cos α -sin α sin α cos α cos α
tg t ctg α -ctg α -tg α tg α ctg α -ctg α -tg α tg α
ctg t tg α -tg α -ctg α ctg α tg α -tg α -ctg α ctg α

 

Пример 34. Найдите , если .

Решение: . По формуле (10.6) . Так как α находится в 3-ей четверти, то и, следовательно, . Ответ: .

Пример 35. Вычислить значение выражения , если .

Решение: Используем формулу (10.10), а затем числитель и знаменатель дроби разделим на . Тогда:

Ответ: 9,25.

Пример 36. Доказать тождество: .

Решение: Используя формулы (10.15), (10.16), получим:

.

Пример 37. Вычислить , если .

Решение: Выразив и через по формулам (10.22), (10.23), получим:

.

Ответ: ¼.

Пример 38. Упростить выражение: .

Решение: Воспользуемся свойствами четности и нечетности тригонометрических функций, а также выделим период в аргументе функций и исключим его, опираясь на свойство периодичности функций:

,

,

,

,

.

Получаем:

Далее используем формулы приведения:

.

Ответ: -1.

Пример 39. Найти .

Решение: Воспользуемся формулой приведения и определением котангенса:

.

Поскольку угол находится в 4-ой четверти , то . Получаем:

 

.

– Конец работы –

Эта тема принадлежит разделу:

Арифметические вычисления. Проценты

Арифметические вычисления Проценты... Обыкновенные дроби Действия... Тема...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Преобразование тригонометрических выражений.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Обыкновенные дроби. Действия над обыкновенными дробями.
1º. Натуральные числа – это числа, употребляемые при счете. Множество всех натуральных чисел обозначают N, т.е. N={1, 2, 3, …}. Дробью называется число, состоящее из нес

Дидактический материал.
Найдите значение выражения: 1) ; 2)

Десятичные дроби. Действия над десятичными дробями.
1º. Обыкновенную дробь со знаменателем 10, 100, 1000 и т.д., записанную без знаменателя, называют десятичной дробью. Например,

Дидактический материал.
Найдите значение выражения: 1) ; 2)

Процент. Основные задачи на проценты.
1º. Процентом называется сотая часть какого-либо числа. Следовательно, само число составляет 100 процентов. Слово «процент» заменяют знаком %, т.е.

Дидактический материал.
1) Найдите: а) 4% от 75; б) % от 330; в) 160% от 82,25. 2) Найдите число, если:

Уравнения с одной переменной. Равносильность уравнений.
1º. Равенство функций называется уравнением с одной переменной. Множество всех зна

Решение уравнений с одним неизвестным, сводящихся к линейным.
1º. Линейным уравнением или уравнением первой степени называется уравнение вида , гд

Квадратные уравнения.
1º. Уравнение вида , где a,b,c – действительные числа, причем а ≠ 0, называют

Квадратичная функция, ее график.
1º. Функция, заданная формулой , где x, y – переменные, a, b, c – действительные чис

Уравнения, содержащие переменную под знаком модуля.
1º. Модуль (абсолютная величина) числа а определяется следующим образом: .

Дидактический материал.
Решите уравнения, сводящиеся к линейным: 1. ; 2.

Степень с целым показателем.
1º. Степенью числа а () с целым показателем n называется число

Арифметический корень. Степень с рациональным показателем.
1º. Арифметическим корнем k-ой степени () из числа а ≥ 0 называется неотрицательное ч

Формулы сокращенного умножения.
1º. Во всякого рода алгебраических преобразованиях используются формулы сокращенного умножения:

Дидактический материал.
Вычислите: 1. ; 2.

Решение линейных и квадратных неравенств.
1º. Решить неравенство с одной переменной – значит найти множество значений переменной, при которых это неравенство является верным. Элементы этого множества называются решениями нер

Метод интервалов.
1º. Если дискриминант квадратного трехчлена D > 0 или D = 0, то квадратное неравенство

Дидактический материал.
Решите неравенства: 1. ; 2.

Неравенства, содержащие знак модуля.
1º. При решении неравенств, содержащих неизвестные под знаком модуля, используется определение модуля, что приводит к рассмотрению двух случаев: а) f(x) ≥ 0, тогда |f(

Множество значений функции.
1º. Множеством (областью) значений E(y) функции y=f(x) называется множество всех таких чисел y0, для каждого из которых найдется число x0 тако

Дидактический материал.
Решите неравенства: 1. ; 2.

Иррациональные уравнения.
  1º. Иррациональным называют уравнение, в котором переменная содержится под знаком корня. При решении иррациональных уравнений применяют 2 метода: метод возведен

Дидактический материал.
Решите уравнения: 1. ; 2.

Методы решения показательных уравнений.
1º. Показательными уравнениями называют уравнения, содержащие переменную в показателе степени. Решение показательных уравнений основано на свойстве степени: две степени с одним

Дидактический материал.
Решите уравнения: 1. ; 2.

Показательные неравенства.
  1º. Неравенство, содержащее переменную в показателе степени, называется показательным неравенством. 2º. Решение показательных неравенств вида

Дидактический материал.
Укажите множество решений неравенства: 1. ; 2.

Логарифмы.
  1º. Логарифмом числа b по основанию a (где ) называется пока

Дидактический материал.
Вычислите: 1. ; 2.

Дидактический материал.
Найдите значение выражения: , если

Решение простейших тригонометрических уравнений.
1º. Уравнение, содержащее неизвестную величину только под знаком тригонометрических функций, называется тригонометрическим. Тригонометрические уравнения либо не имеют корней, либо имеют

Основные методы решения тригонометрических уравнений.
1º. Уравнение вида (a¹0, b¹0, c¹0) равносильно уравнению

Дидактический материал.
Решите уравнение: 1. ; 2.

Планиметрия.
1º. Произвольный треугольник. a, b, c – стороны;

Дидактический материал.
1. В треугольнике ABC длины сторон AB и AC соответственно равны 4 и 6, а синус угла BAC равен

Стереометрия. Многогранники.
1º. Призмой называется многогранник, поверхность которого состоит из двух равных многоугольников (оснований), расположенных в параллельных плоскостях, и параллелограммов (боковых граней

Дидактический материал.
1. Если боковая поверхность правильной четырехугольной призмы равна 40 см2, а полная 90 см2, то высота призмы равна: 1) 5 см 2) 4 см 3) 2 см 4) 3 см 5) 10 см.

Стереометрия. Круглые тела, тела вращения.
1º. Прямым круговым цилиндром (или просто цилиндром) называется тело, образованное вращением прямоугольника вокруг оси, содержащей его сторону. Разверткой боковой поверхности

Дидактический материал.
1. Найти диаметр шара, если его объем равен . 1) 8 2)

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги