рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Приведение матрицы к жордановой нормальной форме.

Приведение матрицы к жордановой нормальной форме. - раздел Математика, АЛГЕБРА   В Предыдущем Параграфе Мы Выяснили, Что Если Матрица ...

 

В предыдущем параграфе мы выяснили, что если матрица с элементами из поля приводится к жордановой нормальной форме, то эта форма определяется для матрицы однозначно с точностью до расположения жордановых клеток на главной диагонали. В этом параграфе мы укажем условие того, чтобы матрица допускала такое приведение, а так же способ практического разыскания жордановой матрицы, подобной матрице , если такая жорданова матрица существует.

ТЕОРЕМА 1. Матрица с элементами из поля тогда и только тогда приводится в поле к жордановой нормальной форме, если все характеристические корни матрицы лежат в самом основном поле .

В самом деле, если матрица подобна жордановой матрице , то эти две матрицы обладают одними и теми же характеристическими корнями. Характеристические корни матрицы находятся, однако, без всяких затруднений: так как определитель матрицы равен произведению ее элементов, стоящих на главной диагонали, то многочлен разлагается над полем на линейные множители и его корнями служат числа, стоящие на главной диагонали матрицы , и только они.

Обратно, пусть все характеристические корни матрицы лежат в самом поле . Если отличные от инвариантные множители матрицы будут

, (10)

то

.

Действительно, определители матрицы и ее канонической матрицы могут отличаться друг от друга лишь постоянным множителем, который на самом деле равен , так как именно таков старший коэффициент характеристического многочлена . Таким образом, среди многочленов (10) нет равных нулю, сумма степеней этих многочленов равна и все они разлагаются над полем на линейные множители последнее ввиду того, что, по условию, многочлен обладает таким разложением.

Пусть (8) будут разложения многочленов (10) в произведения степеней линейных множителей. Назовем элементарными делителями многочлена , отличные от единицы степени различных линейных двучленов, входящие в его разложение (8), т. е.

Элементарные делители всех многочленов (10) назовем элементарными делителями матрицы и выпишем их в виде таблицы (7).

Возьмем теперь жорданову матрицу порядка , составленную из жордановых клеток, определяемых следующим образом: каждому элементарному делителю матрицы ставим в соответствие жорданову клетку порядка , относящуюся к числу . Очевидно, что отличными от инвариантными множителями матрицы будут многочлены (10) и только они. Поэтому матрицы и эквивалентны и, следовательно, матрица подобна жордановой
матрице . □

Пример 5. Найти жорданову нормальную форму матрицы

Решение. Приводя обычным способом матрицу к каноническому виду, получим, что отличными от единицы инвариантными множителями этой матрицы будут многочлены

Мы видим, что матрица приводится к жордановой нормальной форме далее в поле рациональных чисел. Ее элементарными делителями являются многочлены и , а поэтому жордановой нормальной формой матрицы служит матрица

.

На основании предшествующих результатов может быть доказано, наконец, следующее необходимое и достаточное условие приводимости матрицы к диагональному виду.

ТЕОРЕМА 2. Матрица порядка с элементами из поля тогда и только тогда приводится к диагональному виду, если все корни последнего инвариантного множителя ее характеристической матрицы лежат в поле , причем среди этих корней нет кратных.

ДОКАЗАТЕЛЬСТВО. В самом деле, приводимость матрицы к диагональному виду равносильна приводимости к такому жорданову виду, все жордановы клетки которого имеют порядок . Иными словами, все элементарные делители матрицы должны быть многочленами первой степени. Так как, однако, все инвариантные множители матрицы являются делителями многочлена , то последнее условие равносильно тому, что все элементарные делители многочлена имеют степень , что и требовалось доказать. □

 

 

– Конец работы –

Эта тема принадлежит разделу:

АЛГЕБРА

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ... ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ... Государственное образовательное учреждение...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Приведение матрицы к жордановой нормальной форме.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Евклидовы и унитарные пространства.
  Понятие мерного линейного пространства

Изоморфизм унитарных пространств.
Два унитарных (или евклидовых) пространства и

Линейные функции.
Рассмотрим произвольное линейное пространство над полем

ЗАДАЧИ К ГЛАВЕ I.
1. Выяснить, являются ли ортогональными в евклидовом пространстве следующие системы векторов: а) ;

Приведение квадратичной формы к каноническому виду.
  Теория квадратичных форм берёт своё начало в аналитической геометрии, а именно в теории кривых второго порядка. Известно, что уравнение центральной кривой второго порядка на плоскос

Приведение квадратичной формы к главным осям.
  Теория приведения квадратичной формы к каноническому виду, изложенная в предыдущем параграфе, построена по аналогии с геометрической теорией центральных кривых второго порядка, но н

Закон инерции.
  Канонический вид, к которому приводится данная квадратичная форма, определяется неоднозначно. Всякая квадратичная форма может быть приведена к каноническому виду многими различными

Распадающиеся квадратичные формы.
  Перемножая любые две линейные формы от неизвестных,

Положительно определенные формы.
Квадратичная форма от неизвестных с дейст

Пары форм.
  Пусть дана пара действительных квадратичных форм от неизвестных,

ЗАДАЧИ К ГЛАВЕ II.
15. Записать матрицу квадратичной формы , если: а)

Матрицы, их эквивалентность.
  В этой главе займёмся изучением квадратных матриц порядка , элементами которых служат многочлены произв

Второй критерий эквивалентности.
матрица называется унимодулярной

Эквивалентностью их характеристических матриц.
  Как известно [1], две квадратные матрицы порядка подобны тогда и только тогда, когда они задают один и

Жорданова нормальная форма.
В этом параграфе будем рассматривать квадратные матрицы порядка с элементами из поля

Минимальный многочлен.
Пусть дана квадратная матрица порядка с э

ЗАДАЧИ К ГЛАВЕ III.
22. Привести следующие матрицы к нормальной диагональной форме посредством элементарных преобразований:

ОТВЕТЫ.
1. а) да; б) нет; в) да; г) да; д) нет. 2. а) да; б) нет; в) да; г) да; д

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги