Вопрос 3.

Дисперсия обладает рядом свойств:

1. Если из всех значений вариант отнять какое-то постоянное число А, то дисперсия от этого не изменится: s

.

2. Если все значения вариант разделить на какое-то по постоянное число А, то дисперсия уменьшится от этого в А2 раз, а среднее квадратическое отклонение - в А раз:

.

3. Если исчислить дисперсию от любой величины А, которая отличается от средней арифметической , то эта дисперсия всегда будет больше дисперсии, исчисленной от средней арифметической . При этом больше на вполне определенную величину - квадрат разности между средней и условно взятой величиной А, т.е. на : .

Исходя из этих свойств, дисперсия для интервального вариационного ряда с равными интервалами определяется по формуле:

,

где i - величина интервала;

m12 - момент первого порядка в квадрате;

m2- момент второго порядка.

Изучая дисперсию интересующего нас признака, мы не можем определить влияние отдельных факторов, которые характеризуют колеблемость варианта признака. Это можно сделать, разделив изучаемую совокупность на группы, однородные по признаку-фактору, и определив три показателя колеблемости признака в совокупности:

1. Общая дисперсия – она характеризует вариацию признака, которая зависит от всех условий данной совокупности:

,

 

где - общая средняя для всей изучаемой совокупности.

2. Межгрупповая дисперсия - она отражает вариацию изучаемого признака, которая возникает под влиянием признака-фактора, положенного в основу группировки. Она характеризует колеблемость групповых (частных) средних около общей средней:

,

где - средняя по отдельным группам;

- средняя общая;

fi - численность отдельных групп.

3. Средняя внутригрупповых дисперсий - характеризует случайную вариацию в каждой отдельной группе. Эта вариация возникает под влиянием других, не учитываемых факторов и не зависит от признака-фактора, положенного в основу группировки:

.

Правило сложения дисперсий: общая дисперсия равна сумме величин межгрупповой дисперсии и средней из внутригрупповых дисперсий:

.