рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Определители

Определители - раздел Математика, Линейная алгебра и аналитическая геометрия Матрица Порядка M´N – Это Матрица С M Строками И ...

Матрица порядка m´n – это матрица с m строками и n столбцами. При m=n имеем квадратную матрицу порядка n.

Определитель квадратной матрицы порядка n – это число, которое ставится в соответствие этой матрице. Определитель матрицы заключен в прямые скобки.

Определители второго и третьего порядка вычисляются по формулам

= ad – bc;

= a11a22a33 + a12a23a31 + a13a21a32a13a22a31a12a21a33a11a23a32. (1)

В последней формуле (1) имеем сумму произведений элементов матрицы, взятых по одному из каждой строки и каждого столбца матрицы. Часть этих произведений входит в сумму со знаком «+», остальные – со знаком «–». Чтобы правильно расставить эти знаки, можно применить правило треугольника. Произведение элементов главной диагонали матрицы (выходящей из левого верхнего угла) берется со знаком «+», и с этим же знаком берутся произведения по двум треугольникам, имеющим с этой диагональю параллельную сторону, как на левом рисунке. Произведения по второй, побочной диагонали берутся со знаком «–», как и произведения по двум треугольникам, имеющим с ней параллельную сторону (см. правый рисунок).

Пример 1.2.1.Вычислим определитель по формуле (1):

=

= 60 + 3 – 24 – 24 – 6 + 30 = 39.

Пример, иллюстрирующий применение определителя, это правило Крамера для решения систем n линейных уравнений с n переменными. Сначала вычисляем определитель D основной матрицы системы. Если D ¹ 0, то система имеет единственное решение. Для нахождения каждого xi вычисляем определитель Di матрицы, полученной из основной матрицы заменой i-го столбца на столбец свободных членов. Тогда xi находим по формуле xi =для всех i. Этот метод особенно эффективен для решения систем из двух уравнений с двумя переменными; для решения систем с большим числом уравнений и переменных удобнее метод Гаусса.

Пример 1.2.2.Решить систему

Решение. Производим вычисления:

;

; ;

; .


Определитель 3-го порядка можно посчитать и по другой формуле, называемой разложением по первой строке:

= (2)

Структура формулы (2) будет ясна из следующих определений.

Минором элемента aij матрицы А (то есть элемента, стоящего и i-ой строке и j-ом столбце) называется определитель Mij(A) матрицы, полученной из А вычеркиванием i-ой строки и j-го столбца.

Алгебраическим дополнением элемента aij матрицы А называется число
Aij = (–1)i+j Mij(A).

Таким образом, формула (2) означает, что определитель получается умножением элементов первой строки на их алгебраические дополнения и суммированием полученных произведений. При применении формулы (2) не стоит выписывать определители второго порядка в правой части, их можно сразу раскрыть, мысленно выделив их в исходной матрице.

Пример 1.2.3.Вычислим определитель из примера 1.2.1 по формуле (2):

=

= = 39.

Для вычисления определителей более высокого порядка их порядок следует понизить. Для этого пользуются свойствами определителей:

1) если к строке (столбцу) матрицы прибавить другую строку (столбец), умноженную на произвольный скаляр, то ее определитель не изменится;

2) если строку (столбец) матрицы умножить на число l, то на l умножится ее определитель;

3) если поменять местами две строки (столбца) матрицы, то ее определитель поменяет знак;

4) определитель матрицы с нулевой строкой (столбцом) равен 0;

5) определитель матрицы А, у которой все элементы какой-либо строки (столбца), кроме, может быть, aij, равны 0, равен (–1)i+jaijMij, где Mij – определитель матрицы, полученной из А вычеркиванием i-ой строки и j-го столбца.

Для понижения порядка определителя выбираем в нем какой-нибудь элемент, обычно равный 1. Остальные элементы столбца, в котором он стоит, надо заменить нулями. Для этого используем строку, в которой стоит выбранный элемент, как опорную. Преобразуем элементы столбца в нули с помощью правила 1), как в методе Гаусса. При этом, возможно, преобразовывать придется строки не только ниже, но и выше выбранной строки. После этого понижаем порядок определителя по правилу 5). Можно, впрочем, поменять строки и столбцы ролями, делая нули не в столбце, а в строке с помощью опорного столбца.

Пример 1.2.4. Вычислить определитель

.

Решение. Мы имеем элемент 1 на пересечении второй строки и второго столбца. Используя вторую строку, сделаем остальные элементы во втором столбце равными 0. Для этого к первой, третьей и четвертой строкам прибавляем вторую, умноженную на –2, –5, –3 соответственно. Получаем:

= =(–1)2+2= =

= 42 + 12 + 0 – 18 – 16 – 0 = 20.

Перед вычислением определителя третьего порядка его упростили, прибавив ко второй строке третью, умноженную на –2.

– Конец работы –

Эта тема принадлежит разделу:

Линейная алгебра и аналитическая геометрия

Алгебра матриц... На множестве матриц определены операции сложения умножения на число... Складывать можно прямоугольные матрицы одного и того же порядка Сложение выполняется поэлементно...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Определители

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системы линейных уравнений
Рассмотрим систему m линейных уравнений с n переменными Решением

У п р а ж н е н и я
1.2.1.Решить системы по правилу Крамера: а) б)

У п р а ж н е н и я
1.3.1. Выяснить, для каких матриц определены произведения, и найти эти произведения: А =

Линейная зависимость. Базис системы векторов
В геометрии вектор понимается как направленный отрезок, причем векторы, полученные один из другого параллельным переносом, считаются равными. Все равные векторы рассматриваются как один и тот же ве

Прямые на плоскости
Задача аналитической геометрии – применение к геометрическим задачам координатного метода. Тем самым задача переводится в алгебраическую форму и решается средствами алгебры. В прямоугольно

Уравнение прямой на плоскости
Прямую на плоскости можно задавать уравнениями разных видов. Для решения задач следует использовать уравнение, наиболее удобное для данной задачи. Уравнение с угловым коэффициентом

Угол между двумя прямыми.
Пусть прямые имеют угловые коэффициенты k1 и k2. Тогда угол j между ними определяется из условия

У п р а ж н е н и я
1.5.1. Построить уравнение прямой, пересекающей координатные оси в точках (2; 0) и (0; –3). 1.5.2. Даны три точки А(–2; 1), В(1; –3), С

Векторная геометрия
В геометрическом векторном пространстве стандартный базис состоит из векторов, имеющих единичную длину, расположенных по координатным осям и направленных в положительную сторону соответствующих коо

Скалярное произведение
Скалярное произведение векторов и

Векторное произведение
Упорядоченная тройка векторов ,

Смешанное произведение
Смешанным произведением векторов ,

Свойства смешанного произведения.
1. Операции векторного и скалярного произведения можно переставить местами, то есть (´

Уравнение плоскости
Общее уравнение плоскости: Ax + By + Cz + D = 0. (1) Коэффициенты этого уравнения определяются не однозначно, а с точностью до пропорциональности.

Уравнение прямой в пространстве
Прямая может быть задана как пересечение двух плоскостей. В этом случае она задается системой уравнений, определяющих эти плоскости:

У п р а ж н е н и я
1.7.1.В пространстве даны точки А(1; 3; 0), B(–1; 2; 1), C(–2; 1; 3), D (2; 2; 1). а) Постройте уравнение плоскости АВС; б) Пос

Преобразование координат
Часто для определения вида и параметров фигуры, задаваемой уравнением в некоторой системе координат, быва

Кривые второго порядка
Уравнение второго порядка – это уравнение вида Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. Такое уравнение преобразованиями координат приводится

Гипербола
Гиперболой называется множество точек плоскости, для каждой из которых разность расстояний до двух данных точек, называемых фокусами, есть величина постоянная, равная 2а.

Парабола
Параболой называется множество точек плоскости, равноудаленных от данной точки F, называемой фокусом, и данной прямой l, называемой директрисой (предполагается, ч

Определение вида кривой второго порядка
По данному уравнению кривой второго порядка общего вида непонятно, какую кривую оно определяет. Чтобы выяснить это, уравнение требуется привести к каноническому виду с помощью преобразования коорди

У п р а ж н е н и я
1.9.1. Определите вид и параметры кривых второго порядка, заданных уравнениями: а) ; б)

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги