рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Линейная зависимость и независимость векторов

Линейная зависимость и независимость векторов - раздел Математика, ЛИНЕЙНАЯ АЛГЕБРА Пусть L – Линейное Пространство Над Полем ...

Пусть L – линейное пространство над полем Р. Пусть а1, а2, … , аn (*) конечная система векторов из L. Вектор в = a1×а1 + a2×а2 + … + an×аn ( 16) называется линейной комбинацией векторов (*), или говорят, что вектор в линейно выражается через систему векторов (*).

Определение 14. Система векторов (*) называется линейно зависимой, тогда и только тогда, когда существует такой ненулевой набор коэффициентов a1, a2, … , an, что a1×а1 + a2×а2 + … + an×аn = 0. Если же a1×а1 + a2×а2 + … + an×аn = 0 Û a1 = a2 = … = an = 0, то система (*) называется линейно независимой.

Свойства линейной зависимости и независимости.

10. Если система векторов содержит нулевой вектор, то она линейно зависима.

Действительно, если в системе (*) вектор а1 = 0, то 1×0 + 0×а2 + … + 0×аn = 0.

20. Если система векторов содержит два пропорциональных вектора, то она линейно зависима.

Пусть а1 = l×а2. Тогда 1×а1 –l×а2 + 0×а3 + … + 0×аn = 0.

30. Конечная система векторов (*) при n ³ 2 линейно зависима тогда и только тогда, когда хотя бы один из её векторов является линейной комбинацией остальных векторов этой системы.

Þ Пусть (*) линейно зависима. Тогда найдётся ненулевой набор коэффициентов a1, a2, … , an, при котором a1×а1 + a2×а2 + … + an×аn = 0 . Не нарушая общности, можно считать, что a1 ¹ 0. Тогда существует и а1 = ×a2×а2 + … + ×an×аn. Итак, вектор а1 является линейной комбинацией остальных векторов.

Ü Пусть один из векторов (*) является линейной комбинацией остальных. Можно считать, что это первый вектор, т.е. а1 = b2а2 + … + bnаn, Отсюда (–1)×а1 + b2а2 + … + bnаn = 0, т.е. (*) линейно зависима.

Замечание. Используя последнее свойство, можно дать определение линейной зависимости и независимости бесконечной системы векторов.

Определение 15. Система векторов а1, а2, … , аn , … (**) называется линейно зависимой, если хотя бы один её вектор является линейной комбинациейнекоторого конечного числа остальных векторов. В противном случае система (**) называется линейно независимой.

40. Конечная система векторов линейно независима тогда и только тогда, когда ни один из её векторов нельзя линейно выразить через остальные её векторы.

50. Если система векторов линейно независима, то любая её подсистема тоже линейно независима.

60. Если некоторая подсистема данной системы векторов линейно зависима, то и вся система тоже линейно зависима.

Пусть даны две системы векторов а1, а2, … , аn , … (16) и в1, в2, … , вs, … (17). Если каждый вектор системы (16) можно представить в виде линейной комбинации конечного числа векторов системы (17), то говорят, что система (17) линейно выражается через систему (16).

Определение 16. Две системы векторов называются эквивалентными, если каждая из них линейно выражается через другую.

Теорема 9 (основная теорема о линейной зависимости).

Пусть и – две конечные системы векторов из L. Если первая система линейно независима и линейно выражается через вторую, то n £ s.

Доказательство. Предположим, что n > s. По условию теоремы

  (21) Так как система линейно независима, то равенство (18) Û х12=…=хn= 0. Подставим сюда выражения векторов : …+=0 (19). Отсюда (20). Условия (18), (19) и (20), очевидно, эквивалентны. Но (18) выполняется только при х12=…=хn= 0. Найдём, когда верно равенство (20). Если все его коэффициенты равны нулю, то оно, очевидно, верно. Приравняв их нулю, получим систему (21). Так как эта система имеет нулевое решение, то она

совместна. Так как число уравнений больше числа неизвестных, то система имеет бесконечно много решений. Следовательно, у неё есть ненулевое решение х10, х20, …, хn0. При этих значениях равенство (18) будет верно, что противоречит тому, что система векторов линейно независима. Итак, наше предположение не верно. Следовательно, n £ s.

Следствие. Если две эквивалентные системы векторов конечны и линейно независимы, то они содержат одинаковое число векторов.

Определение 17. Система векторов называется максимальной линейно независимой системой векторов линейного пространства L, если она линейно независима, но при добавлении к ней любого вектора из L , не входящего в эту систему, она становится уже линейно зависимой.

Теорема 10. Любые две конечные максимальные линейно независимые системы векторов из L содержат одинаковое число векторов.

Доказательство следует из того, что любые две максимальные линейно независимые системы векторов эквивалентны.

Легко доказать, что любую линейно независимую систему векторов пространства L можно дополнить до максимальной линейно независимой системы векторов этого пространства.

Примеры:

1. Во множестве всех коллинеарных геометрических векторов любая система, состоящая их одного ненулевого вектора, является максимальной линейно независимой.

2. Во множестве всех компланарных геометрических векторов любые два неколлинеарных вектора составляют максимальную линейно независимую систему.

3. Во множестве всех возможных геометрических векторов трёхмерного евклидова пространства любая система трёх некомпланарных векторов является максимальной линейно независимой.

4. Во множестве всех многочленов степени не выше n с действительными (комплексными) коэффициентами система многочленов 1, х, х2, … , хn является максимальной линейно независимой.

5. Во множестве всех многочленов с действительными (комплексными) коэффициентами примерами максимальной линейно независимой системы являются

а) 1, х, х2, … , хn, … ;

б) 1, (1 – х), (1 – х)2, … , (1 – х)n, …

6. Множество матриц размерности m´n является линейным пространством (проверьте это). Примером максимальной линейно независимой системы в этом пространстве является система матриц Е11 = , Е12 =, … , Еmn = .

Пусть дана система векторов с1, с2, … , ср (*). Подсистема векторов из (*) называется максимальной линейно независимой подсистемой системы (*), если она линейно независима, но при добавлении к ней любого другого вектора этой система она становится линейно зависимой. Если система (*) конечна, то любая её максимальная линейно независимая подсистема содержит одно и то же число векторов. (Доказательство проведите самостоятельно). Число векторов в максимальной линейно независимой подсистеме системы (*) называется рангом этой системы. Очевидно, эквивалентные системы векторов имеют одинаковые ранги.

– Конец работы –

Эта тема принадлежит разделу:

ЛИНЕЙНАЯ АЛГЕБРА

З И Андреева... ЛИНЕЙНАЯ АЛГЕБРА...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Линейная зависимость и независимость векторов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЛИНЕЙНАЯ АЛГЕБРА
Учебное пособие   Пермь 2011   ББК 22.14 УДК 512.6 А 655 Библиогр. назв. ISBN   Учебное посо

I.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ГАУССА
Теория систем линейных уравнений кладёт начало большому и важному разделу алгебры – линейной алгебре. Отличие от элементарной алгебры в линейной алгебре изучаются системы любого числа уравнений с л

Определители второго и третьего порядков
Одним из источников появления определителей 2-го и 3-го порядков являются системы двух и трёх линейных уравнений с двумя и соответственно тремя переменными. Пусть дана система

Комплексные числа
Определение 4. Комплексным числом называется выражение вида а + вi, где а и в –

Перестановки и подстановки
Мы получили два эквивалентных определения определителя третьего порядка (формулы (4) и (5)). С помощью (4) определитель 3-го порядка вводится с помощью определителей второго порядка (разложение по

Определители n-го порядка
Пусть А = произвольная квадратная матрица n-го порядка с действительными (или комплексными) элементами.

Сложение матриц. Умножение матрицы на действительное (комплексное) число
Рассмотрим множество Mmn всех матриц размерности m´n с действительными (комплексными) элементами. Определение 8. Суммой двух матриц одинаков

Простые и двойные суммы
Введём некоторые общематематические понятия и обозначения. Определение 10. Сумма вида а1 + а2 + … +аn называется

Умножение матриц
Пусть А – матрица размерности m´n и В – матрица размерности n´ к. Произведением матрицы А на матрицу В называется матрица С

Решение матричных уравнений
Рассмотрим простейшие матричные уравнения вида А×Х = В (14) и Х×А = В (15). Возможны два случая: 1) матрица А квадратная невырожденная; 2) матрица А

Базис векторного пространства. Координаты вектора
Пусть L – линейное пространство над полем Р. Определение 18. Базисом линейного пространства называется любая упорядо

Матрица перехода. Связь координат вектора в разных базисах
Пусть L – линейное пространство над полем Р и пусть в нём зафиксированы два базиса е = (е

Подпространства линейных пространств
Определение 22. Подпространством линейного пространства называется такое множество его элементов, которое само является линейным пространством над тем же полем.

Изоморфизм линейных пространств
Определение 24. Два линейных пространства L и L1 над одним и тем же полем Р называются

Ранг матрицы
Пусть Р некоторое фиксированное поле и пусть А = произвольная матрица размерност

Решение системы линейных уравнений с помощью ранга матрицы
Пусть дана система линейных уравнений (25), коэффициенты которых принадлежат данному полю Р

Пространство решений системы линейных однородных уравнений
Пусть дана система (30) линейных однородных уравнений с коэффициентами из поля Р.

Связь решений однородной и неоднородной систем линейных уравнений
  Пусть (25) произвольная система линейных неоднородных уравнений с коэффициентами из поля

Линейные преобразования линейного пространства
Определение 35. Линейным преобразованием линейного пространства называется линейный оператор данного линейного пространства самого в себя. j : L

Невырожденные линейные преобразования
Пусть Ln – линейное n-мерное пространство над полем Р и пусть j : Ln ® Ln

Собственные векторы и собственные значения линейного преобразования
Пусть Ln – линейное n-мерное пространство над полем Р, j : Ln® Ln

Линейные преобразования в базисе из собственных векторов. Линейные преобразования с простым спектром
Теорема 39. Линейное преобразование j линейного пространства Ln над полем Р имеет в базисе е

Определение 43
а) Р = R Будем говорить, что в действительном линейном пространстве L определено скалярное произведение векторов, если каждой упорядоченной паре

Матрица Грама в евклидовом пространстве
Пусть Еn – n-мерное евклидово пространство и пусть е = (е1, е2,

Ортонормированные базисы в евклидовом пространстве
Определение 51. Базис е = (е1, е2,... , еn) про

Изоморфизм евклидовых пространств
Определение 52. Два евклидовых пространства Е и Е1 называются изоморфными, если они изоморфны

VIII. НЕКОТОРЫЕ ВИДЫ ЛИНЕЙНЫХ ПРЕОБРАЗОВАНИЙ ЕВКЛИДОВЫХ ПРОСТРАНСТВ
Так как евклидовы пространства являются линейными пространствами, то все свойства линейных преобразований линейных пространств верны и в евклидовых пространствах. Но все эти свойства связаны лишь с

Ортогональные линейные преобразования
Определение 53. Линейное преобразование j евклидова пространства Е называется ортогональным, если для любых векторов

Сопряженные линейные преобразования
Пусть j - линейное преобразование евклидова пространства Еn . Определение 55. Линейное преобразование

Самосопряженные (симметрические) линейные преобразования
Определение 56. Линейное преобразование называется самосопряжённым, если оно совпадает со своим сопряжённым преобразованием ( j - самосопряжённое

Линейные формы
Пусть Ln – n-мерное линейное пространство над полем Р и f –линейное отображение пространства Ln

Билинейные формы
Пусть Ln – n-мерное линейное пространство над полем Р . Определение 59. Отображение f

Квадратичные формы
Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана симметрическая билинейная форма f (

Приведение квадратичной формы к каноническому виду с помощью выделения полных квадратов
Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана квадратичная форма j(а

Закон инерции квадратичных форм
Квадратичную форму можно приводить к нормальному виду различными невырожденными линейными преобразованиями (преобразованиями координат). Возникает вопрос: как связаны между собой различные нормальн

Распадающиеся квадратичные формы
Определение 66. Квадратичная форма называется распадающейся, если её можно представить в виде произведения двух линейных форм. Теоре

ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ
  1. Комплексные числа: определение; алгебраическая форма, сложение и умножение комплексных чисел, заданных в алгебраической форме; изображение комплексных чисел на евклидовой плоскос

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги