рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Решение системы линейных уравнений с помощью ранга матрицы

Решение системы линейных уравнений с помощью ранга матрицы - раздел Математика, ЛИНЕЙНАЯ АЛГЕБРА Пусть Дана Система Линейных Уравнений ...

Пусть дана система линейных уравнений (25), коэффициенты которых принадлежат данному полю Р.

Пусть А = (26) матрица этой системы и А1 = (27) расширенная матрица. Если система (25) имеет хотя бы одно решение, то её называют совместной, в противном случае система несовместная. Если все слагаемые, содержащие неизвестные, стоят в левых частях уравнений, а свободные члены – в правых частях, то система называется приведённой. Если в системе (25) хотя бы один свободный член отличен от нуля, то эта система называется неоднородной. Если же все свободные члены равны нулю, то имеем систему линейных однородных уравнений.

Теорема 26 (теорема Кронекера – Капелли). Система линейных уравнений совместна тогда и только тогда, когда ранг её матрицы равен рангу расширенной матрицы.

Доказательство. Þ Пусть система (25) совместна. Следовательно, существуют такие элементы a1, a2, … , an , что

Записав эти равенства в векторной форме, получим, что в = a1×а1+ a2×а2 + … + an×аn , где а1, а2, … , аn –векторы-столбцы матрицы А, в – вектор-столбец свободных членов. Из последнего равенства следует, что системы векторов а1, а2, … , аn и а1, а2, … , аn , в эквивалентны, поэтому их ранги равны. Итак, rang A = rang A1.

Ü Пусть rang A = rang A1 = к. Не нарушая общности, можно считать, что отличный от нуля минор к-го порядка в матрице А стоит в левом верхнем углу. Векторы-столбцы обозначим а1, а2, … , ак, ак+1, … , аn, в (*). Система а1, а2, … , ак будет максимальной линейно независимой подсистемой в системе (*), следовательно, найдутся такие коэффициенты х10, х20, … , хк0, что в = х10 а1+ х20 а2+ … + хк0 ак.Это равенство равносильно равенству в = х10 а1+ х20 а2+ … + хк0 ак+ … + 0×ак+1 + … + 0×аn. Перейдя к координатам, получим:

(28)

Отсюда следует, что (х10, х20, … , хк0, 0,… ,0) – решение системы (25), т.е. эта система совместна.

Из теоремы Кронекера – Капелли следуют правила решения системы линейных уравнений.

Для решения системы линейных уравнений достаточно

1. Найти ранги основной и расширенной матриц ( А и А1 ). Если rang A ¹ rang A1, то система не имеет решения.

2. Если rang A = rang A1 = к, то для решения достаточно оставить к уравнений, коэффициенты которых стоят на тех строчках матрицы А, на которых стоит базисный минор, и в этих уравнениях оставить в их левых частях те неизвестные, коэффициенты которых входят в базисный минор. Остальные неизвестные нужно перенести в правые части уравнений. Они могут принимать все возможные значения из поля Р. Эти неизвестные называются свободными. (Не нарушая общности, можно считать, что оставлены первые к уравнений и первые к неизвестных , система (29)).

(29) Определитель левой части системы (29) отличен от нуля, число уравнений равно числу неизвестных, поэтому (по теореме Крамера) эта система при всевозможных хк+1, … , хn имеет единственное решение.

Следовательно, неизвестные х1, х2, … , хк можно выразить через хк+1, … , хn . Формулы, с помощью которых х1, х2, … , хк выражаются через хк+1, … , хn задают так называемое общее решение данной системы уравнений. При каждом конкретном наборе переменных хк+1, … , хn мы получим единственный набор х1, х2, … , хк . Это частное решение системы уравнений. Число свободных неизвестных равно nк. Поэтому если к = n, то свободных неизвестных нет, система (29), а поэтому и система (25), имеет единственное решение. Если же к < n, то система имеет бесконечно много решений.

Пример. Исследовать систему уравнений и решить её, если она совместна в поле R.

Решение. Составим матрицу и расширенную матрицу.

А1 = Так как первый и второй столбцы пропорциональны, то для нахождения ранга матрицы один из них можно удалить. Будем считать, что удалён второй столбец. Минор М = ¹ 0.

Окаймим этот минор первым столбцом и третьей строкой , получим

D == 56 ¹ 0. Следовательно, rang A = 3. Но rang A1 не может быть больше 3. Итак, rang A = rang A1 = 3. Для решения остаются три уравнения, т.е. все уравнения. Оставим в левых частях первое, третье и четвёртое неизвестные, второе неизвестное перенесём в правые части,

получим

Для этой системы D = 56, = 84х2 ,

= 20, = 24. По формулам Крамера получаем х1 = , х3 = , х4 = . Общее решение данной системы (), х2 – любое действительное число.

 

– Конец работы –

Эта тема принадлежит разделу:

ЛИНЕЙНАЯ АЛГЕБРА

З И Андреева... ЛИНЕЙНАЯ АЛГЕБРА...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Решение системы линейных уравнений с помощью ранга матрицы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЛИНЕЙНАЯ АЛГЕБРА
Учебное пособие   Пермь 2011   ББК 22.14 УДК 512.6 А 655 Библиогр. назв. ISBN   Учебное посо

I.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ГАУССА
Теория систем линейных уравнений кладёт начало большому и важному разделу алгебры – линейной алгебре. Отличие от элементарной алгебры в линейной алгебре изучаются системы любого числа уравнений с л

Определители второго и третьего порядков
Одним из источников появления определителей 2-го и 3-го порядков являются системы двух и трёх линейных уравнений с двумя и соответственно тремя переменными. Пусть дана система

Комплексные числа
Определение 4. Комплексным числом называется выражение вида а + вi, где а и в –

Перестановки и подстановки
Мы получили два эквивалентных определения определителя третьего порядка (формулы (4) и (5)). С помощью (4) определитель 3-го порядка вводится с помощью определителей второго порядка (разложение по

Определители n-го порядка
Пусть А = произвольная квадратная матрица n-го порядка с действительными (или комплексными) элементами.

Сложение матриц. Умножение матрицы на действительное (комплексное) число
Рассмотрим множество Mmn всех матриц размерности m´n с действительными (комплексными) элементами. Определение 8. Суммой двух матриц одинаков

Простые и двойные суммы
Введём некоторые общематематические понятия и обозначения. Определение 10. Сумма вида а1 + а2 + … +аn называется

Умножение матриц
Пусть А – матрица размерности m´n и В – матрица размерности n´ к. Произведением матрицы А на матрицу В называется матрица С

Решение матричных уравнений
Рассмотрим простейшие матричные уравнения вида А×Х = В (14) и Х×А = В (15). Возможны два случая: 1) матрица А квадратная невырожденная; 2) матрица А

Линейная зависимость и независимость векторов
Пусть L – линейное пространство над полем Р. Пусть а1, а2, … , аn (*) конечная система векто

Базис векторного пространства. Координаты вектора
Пусть L – линейное пространство над полем Р. Определение 18. Базисом линейного пространства называется любая упорядо

Матрица перехода. Связь координат вектора в разных базисах
Пусть L – линейное пространство над полем Р и пусть в нём зафиксированы два базиса е = (е

Подпространства линейных пространств
Определение 22. Подпространством линейного пространства называется такое множество его элементов, которое само является линейным пространством над тем же полем.

Изоморфизм линейных пространств
Определение 24. Два линейных пространства L и L1 над одним и тем же полем Р называются

Ранг матрицы
Пусть Р некоторое фиксированное поле и пусть А = произвольная матрица размерност

Пространство решений системы линейных однородных уравнений
Пусть дана система (30) линейных однородных уравнений с коэффициентами из поля Р.

Связь решений однородной и неоднородной систем линейных уравнений
  Пусть (25) произвольная система линейных неоднородных уравнений с коэффициентами из поля

Линейные преобразования линейного пространства
Определение 35. Линейным преобразованием линейного пространства называется линейный оператор данного линейного пространства самого в себя. j : L

Невырожденные линейные преобразования
Пусть Ln – линейное n-мерное пространство над полем Р и пусть j : Ln ® Ln

Собственные векторы и собственные значения линейного преобразования
Пусть Ln – линейное n-мерное пространство над полем Р, j : Ln® Ln

Линейные преобразования в базисе из собственных векторов. Линейные преобразования с простым спектром
Теорема 39. Линейное преобразование j линейного пространства Ln над полем Р имеет в базисе е

Определение 43
а) Р = R Будем говорить, что в действительном линейном пространстве L определено скалярное произведение векторов, если каждой упорядоченной паре

Матрица Грама в евклидовом пространстве
Пусть Еn – n-мерное евклидово пространство и пусть е = (е1, е2,

Ортонормированные базисы в евклидовом пространстве
Определение 51. Базис е = (е1, е2,... , еn) про

Изоморфизм евклидовых пространств
Определение 52. Два евклидовых пространства Е и Е1 называются изоморфными, если они изоморфны

VIII. НЕКОТОРЫЕ ВИДЫ ЛИНЕЙНЫХ ПРЕОБРАЗОВАНИЙ ЕВКЛИДОВЫХ ПРОСТРАНСТВ
Так как евклидовы пространства являются линейными пространствами, то все свойства линейных преобразований линейных пространств верны и в евклидовых пространствах. Но все эти свойства связаны лишь с

Ортогональные линейные преобразования
Определение 53. Линейное преобразование j евклидова пространства Е называется ортогональным, если для любых векторов

Сопряженные линейные преобразования
Пусть j - линейное преобразование евклидова пространства Еn . Определение 55. Линейное преобразование

Самосопряженные (симметрические) линейные преобразования
Определение 56. Линейное преобразование называется самосопряжённым, если оно совпадает со своим сопряжённым преобразованием ( j - самосопряжённое

Линейные формы
Пусть Ln – n-мерное линейное пространство над полем Р и f –линейное отображение пространства Ln

Билинейные формы
Пусть Ln – n-мерное линейное пространство над полем Р . Определение 59. Отображение f

Квадратичные формы
Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана симметрическая билинейная форма f (

Приведение квадратичной формы к каноническому виду с помощью выделения полных квадратов
Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана квадратичная форма j(а

Закон инерции квадратичных форм
Квадратичную форму можно приводить к нормальному виду различными невырожденными линейными преобразованиями (преобразованиями координат). Возникает вопрос: как связаны между собой различные нормальн

Распадающиеся квадратичные формы
Определение 66. Квадратичная форма называется распадающейся, если её можно представить в виде произведения двух линейных форм. Теоре

ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ
  1. Комплексные числа: определение; алгебраическая форма, сложение и умножение комплексных чисел, заданных в алгебраической форме; изображение комплексных чисел на евклидовой плоскос

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги