рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Приведение квадратичной формы к каноническому виду с помощью выделения полных квадратов

Приведение квадратичной формы к каноническому виду с помощью выделения полных квадратов - раздел Математика, ЛИНЕЙНАЯ АЛГЕБРА Пусть LN – N-Мерное Линейное Пространство ...

Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана квадратичная форма j(а) = . Если n = 1, то форма уже имеет канонический вид, поэтому рассуждение можно вести индукцией по числу переменных. Пусть форму можно привести к каноническому виду, если число переменных не более (n – 1). Докажем его для n переменных. Возможны два случая.

1) Все коэффициенты aкк = 0. Если все коэффициенты равны 0, то можно считать, что форма имеет канонический вид. Поэтому пусть хотя бы один из коэффициентов отличен от нуля. Не нарушая общности, можно считать, что a12 ¹ 0. Сделаем преобразование координат: х1 = у1у2 , х2 = у1 + у2 , х3 = у3 , … , хn = уn . В новых координатах

j(а) = a12у12 a12у22 + y , где y не будет содержать у12 и у22, поэтому эти слагаемые ни с чем проведены быть не могут. Следовательно, достаточно рассмотреть случай

2) Хотя бы один коэффициент при квадратах переменных отличен от нуля. Пусть a11¹ 0. Соберём в форме j(а) все слагаемые, содержащие х1, вынесем a11 за скобки, дополним полученную скобку до полного квадрата и компенсируем сделанные добавки.

a11×() +

+ y (х2, х3, … ,хn), где y (х2, х3, … ,хn) – квадратичная форма от (n – 1) переменной. По предположению индукции форму y (х2, х3, … ,хn) можно с помощью преобразования координат (х2, х3, … ,хn) привести к каноническому виду. Дополнив это преобразование формулой у1 = , получим, что j(а) = .

Рассмотрим этот способ упрощения квадратичной формы на примере.

Пример. Привести к каноническому виду квадратичную форму

1) j = 3х12 + 5х22 + х326х1х2 + 9х1х3 – 7х2х3 .

Решение. Коэффициент при х12 отличен от нуля, поэтому соберём слагаемые, содержащие х1 (они подчёркнуты), вынесем за скобки коэффициент при х12 (т.е. 3) и дополним выражение в скобках до полного квадрата (за скобками компенсируем то, что добавили в скобках), получим

j = 3×(х12 – 2х1х2 + 3х1х3 + х22 + х32 – 3х2х3) – 3х22х32 + 9х2х3 + 5х22 + х32 – 7х2х3 =

= 3(х1х2 +х3)2 +2х22х32 + 2х2х3. Так как коэффициент при х22 отличен от нуля, то соберём слагаемые, содержащие х2, вынесем коэффициент при х22 за скобку и дополним выражение в скобках до полного квадрата. Получим

j = 3(х1х2 + х3)2 +2(х22 + х2х3 + х32) –х32х32 =3(х1х2 + х3)2 + 2(х2 + х3)2х32. Сделаем преобразование координат:

у1 = х1х2 + х3 , у2 = х2 + х3 , у3 = х3. В новых координатах получим, что

j = 3у12 + 2у22у32.

Если квадратичная форма задана над полем действительных чисел, то сделав ещё одно преобразование координат: z1 = у1, z2 = у2 , z3 = у3 , получим нормальный вид данной формы j = z12 + z22 – z32.

2) j = х1х3 + 2х2х3 + 4х3х4 .

Решение. Так как данная квадратичная форма не содержит квадратов переменных, то сначала сделаем преобразование координат по формулам: х1 =у1у3, х2 =у2, х3 =у1 + у3, х4= у4. Получим j = (у1у3)( у1 + у3) + 2у2(у1у3) + 4(у1 + у3)у4 = у12у32 + 1у2 + 1у4 –2у2у3 + 4у3у4. Соберём слагаемые с у1 (коэффициент при у12 равен 1, поэтому ничего за скобки выносить не надо). Получим j = (у12+1у2 + 1у4 + у22 +4у42+4у2у4) – у22– 4у42 4у2у4у322у2у3 + 4у3у4 = = (у1 + у2 + 2у4)2 – (у22 + 2у2у3 + 4у2у4 + у32 + 4у42 + 4у3у4) + у32+ 4у42 + 4у3у4 – 4у42у32 + 4у3у4 = = (у1 + у2 + 2у4)2 – (у2 + у3 + 2у4)2 + 4у3у4. Для преобразования последнего слагаемого снова нужно положить у3 = z3 – z4, у4 = z3 + z4. Отсюда z3 = , z4 =. Итак, сделаем преобразование координат по формулам:

z1 = у1 + у2 + 2у4 , z2 = у2 + у3 + 2у4 , z3 = , z4 =. В новых координатах

j = z12 z22 + 4z32 – 4z42.

Получили канонический вид данной квадратичной формы над полем действительных чисел.

 

– Конец работы –

Эта тема принадлежит разделу:

ЛИНЕЙНАЯ АЛГЕБРА

З И Андреева... ЛИНЕЙНАЯ АЛГЕБРА...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Приведение квадратичной формы к каноническому виду с помощью выделения полных квадратов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЛИНЕЙНАЯ АЛГЕБРА
Учебное пособие   Пермь 2011   ББК 22.14 УДК 512.6 А 655 Библиогр. назв. ISBN   Учебное посо

I.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ГАУССА
Теория систем линейных уравнений кладёт начало большому и важному разделу алгебры – линейной алгебре. Отличие от элементарной алгебры в линейной алгебре изучаются системы любого числа уравнений с л

Определители второго и третьего порядков
Одним из источников появления определителей 2-го и 3-го порядков являются системы двух и трёх линейных уравнений с двумя и соответственно тремя переменными. Пусть дана система

Комплексные числа
Определение 4. Комплексным числом называется выражение вида а + вi, где а и в –

Перестановки и подстановки
Мы получили два эквивалентных определения определителя третьего порядка (формулы (4) и (5)). С помощью (4) определитель 3-го порядка вводится с помощью определителей второго порядка (разложение по

Определители n-го порядка
Пусть А = произвольная квадратная матрица n-го порядка с действительными (или комплексными) элементами.

Сложение матриц. Умножение матрицы на действительное (комплексное) число
Рассмотрим множество Mmn всех матриц размерности m´n с действительными (комплексными) элементами. Определение 8. Суммой двух матриц одинаков

Простые и двойные суммы
Введём некоторые общематематические понятия и обозначения. Определение 10. Сумма вида а1 + а2 + … +аn называется

Умножение матриц
Пусть А – матрица размерности m´n и В – матрица размерности n´ к. Произведением матрицы А на матрицу В называется матрица С

Решение матричных уравнений
Рассмотрим простейшие матричные уравнения вида А×Х = В (14) и Х×А = В (15). Возможны два случая: 1) матрица А квадратная невырожденная; 2) матрица А

Линейная зависимость и независимость векторов
Пусть L – линейное пространство над полем Р. Пусть а1, а2, … , аn (*) конечная система векто

Базис векторного пространства. Координаты вектора
Пусть L – линейное пространство над полем Р. Определение 18. Базисом линейного пространства называется любая упорядо

Матрица перехода. Связь координат вектора в разных базисах
Пусть L – линейное пространство над полем Р и пусть в нём зафиксированы два базиса е = (е

Подпространства линейных пространств
Определение 22. Подпространством линейного пространства называется такое множество его элементов, которое само является линейным пространством над тем же полем.

Изоморфизм линейных пространств
Определение 24. Два линейных пространства L и L1 над одним и тем же полем Р называются

Ранг матрицы
Пусть Р некоторое фиксированное поле и пусть А = произвольная матрица размерност

Решение системы линейных уравнений с помощью ранга матрицы
Пусть дана система линейных уравнений (25), коэффициенты которых принадлежат данному полю Р

Пространство решений системы линейных однородных уравнений
Пусть дана система (30) линейных однородных уравнений с коэффициентами из поля Р.

Связь решений однородной и неоднородной систем линейных уравнений
  Пусть (25) произвольная система линейных неоднородных уравнений с коэффициентами из поля

Линейные преобразования линейного пространства
Определение 35. Линейным преобразованием линейного пространства называется линейный оператор данного линейного пространства самого в себя. j : L

Невырожденные линейные преобразования
Пусть Ln – линейное n-мерное пространство над полем Р и пусть j : Ln ® Ln

Собственные векторы и собственные значения линейного преобразования
Пусть Ln – линейное n-мерное пространство над полем Р, j : Ln® Ln

Линейные преобразования в базисе из собственных векторов. Линейные преобразования с простым спектром
Теорема 39. Линейное преобразование j линейного пространства Ln над полем Р имеет в базисе е

Определение 43
а) Р = R Будем говорить, что в действительном линейном пространстве L определено скалярное произведение векторов, если каждой упорядоченной паре

Матрица Грама в евклидовом пространстве
Пусть Еn – n-мерное евклидово пространство и пусть е = (е1, е2,

Ортонормированные базисы в евклидовом пространстве
Определение 51. Базис е = (е1, е2,... , еn) про

Изоморфизм евклидовых пространств
Определение 52. Два евклидовых пространства Е и Е1 называются изоморфными, если они изоморфны

VIII. НЕКОТОРЫЕ ВИДЫ ЛИНЕЙНЫХ ПРЕОБРАЗОВАНИЙ ЕВКЛИДОВЫХ ПРОСТРАНСТВ
Так как евклидовы пространства являются линейными пространствами, то все свойства линейных преобразований линейных пространств верны и в евклидовых пространствах. Но все эти свойства связаны лишь с

Ортогональные линейные преобразования
Определение 53. Линейное преобразование j евклидова пространства Е называется ортогональным, если для любых векторов

Сопряженные линейные преобразования
Пусть j - линейное преобразование евклидова пространства Еn . Определение 55. Линейное преобразование

Самосопряженные (симметрические) линейные преобразования
Определение 56. Линейное преобразование называется самосопряжённым, если оно совпадает со своим сопряжённым преобразованием ( j - самосопряжённое

Линейные формы
Пусть Ln – n-мерное линейное пространство над полем Р и f –линейное отображение пространства Ln

Билинейные формы
Пусть Ln – n-мерное линейное пространство над полем Р . Определение 59. Отображение f

Квадратичные формы
Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана симметрическая билинейная форма f (

Закон инерции квадратичных форм
Квадратичную форму можно приводить к нормальному виду различными невырожденными линейными преобразованиями (преобразованиями координат). Возникает вопрос: как связаны между собой различные нормальн

Распадающиеся квадратичные формы
Определение 66. Квадратичная форма называется распадающейся, если её можно представить в виде произведения двух линейных форм. Теоре

ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ
  1. Комплексные числа: определение; алгебраическая форма, сложение и умножение комплексных чисел, заданных в алгебраической форме; изображение комплексных чисел на евклидовой плоскос

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги