рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Умножение матриц

Умножение матриц - раздел Математика, ЛИНЕЙНАЯ АЛГЕБРА Пусть А – Матрица Размерности M´n И В – Матрица Ра...

Пусть А – матрица размерности m´n и В – матрица размерности n´ к. Произведением матрицы А на матрицу В называется матрица С, элементы которой получаются следующим образом: каждый элемент р-ой строки матрицы А умножается на соответствующий элемент q-го столбца матрицы В, полученные произведения складываются и результат ставится в пересечение р-ой строки и q-го столбца матрицы С, т.е. срq = (11).

Размерность матрицы С равна m´ к.

Пример 1.

= .

Пример 2. Произведение матриц не определено.

Но даже если А×В и В×А определены, то они не обязаны быть равны.

Пример 3. А×В = ,

А×В = .

В этом примере А×В и В×А определены, но А×В ¹ В×А . Следовательно, для умножения матриц коммутативный закон не имеет места. Можно проверить:

10. Если (А×В)×С и А×(В×С) определены, то (А×В)×С = А×(В×С).

20. Если (А + ВС определено, то (А + ВС = А×С + В×С.

30. Если А×В определено, то (lА)×В =l×(А×В).

 

3.4. Умножение квадратных матриц одного порядка.

Произведение любых двух квадратных матриц одного порядка всегда определено. При умножении двух квадратных матриц n-го порядка получится матрица того же порядка.

Теорема 7. Определитель произведения квадратных матриц одного порядка равен произведению определителей сомножителей.

Доказательство. Пусть А = , В = . Составим

С = матрицу С и вычислим её определитель двумя способами. Сначала используем теорему Лапласа, разложив его по первым n строкам. Получим |С| = |А|×|В|. Для вычисления вторым способом преобразуем матрицу С, используя те преобразования, которые не меняют определитель. К (n +1)-му столбцу матрицы С прибавим 1-ый столбец, умноженный на , 2-ой столбец, умноженный на , … , n-ый столбец, умноженный на .

Тогда в (n +1)-м столбце на первых n местах будут стоять элементы первого столбца матрицы А×В, а на остальных местах – нули.

С1 = Продолжая аналогичные преобразования с (n +2)-м и т.д. столбцами, получим матрицу С1. Здесь скр – элементы произведения А×В. Очевидно, |С1| = |С|. Определитель матрицы С1 вычислим, разлагая его (по теореме Лапласа) по последним n строкам. Получим |С| = (-1)n×(-1)к×|А×В|, где к = 1 + 2 + …+ n + + (n + 1) + … + 2n = (2n + 1 )×n. Так как (2n + 1 )×n + + n = 2(n + 1 ), то |С| = |АВ |. Итак, |АВ | = |А|×|В| (12).

Если |А| ¹ 0, то матрица А называется невырожденной, если же |А| = 0, то матрица А вырожденная. Из теоремы 7 следует, что произведение двух невырожденных квадратных матриц одного порядка есть невырожденная матрица того же порядка, если же одна из матриц вырожденная, то их произведение – тоже вырожденная матрица.

Квадратная матрица Е = называется единичной матрицей. Легко проверить, что Е×А = А×Е для любой квадратной матрицы А, имеющей тот же порядок, что и Е. Очевидно, |Е| = 1.

Определение 11. Матрица В называется правойобратной для матрицы А, если В×А= Е и левой обратной для А, если А×В = Е.

Возникает вопрос, всякая ли квадратная матрица имеет левую или правую обратную матрицу. Если В – левая или правая обратная матрица, то (по теореме 7) |В|×|А| = |А|×|В| = 1, т.е. матрица А не может быть вырожденной.

Пусть А квадратная невырожденная матрица, найдём алгебраические дополнения для всех её элементов. Составим новую матрицу А* следующим образом: алгебраические дополнения элементов к-ой строки матрицы А поставим в к-ый столбец матрицы А*, т.е. А* = . Матрица А* называется присоединённой для матрицы А. По правилу умножения матриц и свойствам определителя получаем, что

А×А*= А*×А = = |АЕ.

Так как |А| ¹ 0, то матрица В = существует и А×В = В×А = Е, т.е. матрица В является и левой и правой обратной матрицей для матрицы А. Эта матрица называется обратной матрицей для А и обозначается А-1. Итак, получили

Теорема 8. Для всякой квадратной невырожденной матрицы существует обратная матрица. Обратная матрица перестановочна с данной матрицей и вычисляется по формуле

А-1= (13)

Пример 4. Найдите обратную матрицу, если А = .

Решение. Найдём |А| = 10 + 12 + 0 – 0 + 4 + 12 = 36.

Составим присоединённую матрицу, для этого вычислим алгебраические дополнения. А11 = = 14, А12 = = - 6, А13 = = 3, А21 == 8, А22 = = 2, А23 = = -1, А31 = = 28, А32 = = 16, А33 = = 11. Используя теорему 8, получим А-1 = .

 

– Конец работы –

Эта тема принадлежит разделу:

ЛИНЕЙНАЯ АЛГЕБРА

З И Андреева... ЛИНЕЙНАЯ АЛГЕБРА...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Умножение матриц

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ЛИНЕЙНАЯ АЛГЕБРА
Учебное пособие   Пермь 2011   ББК 22.14 УДК 512.6 А 655 Библиогр. назв. ISBN   Учебное посо

I.СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД ГАУССА
Теория систем линейных уравнений кладёт начало большому и важному разделу алгебры – линейной алгебре. Отличие от элементарной алгебры в линейной алгебре изучаются системы любого числа уравнений с л

Определители второго и третьего порядков
Одним из источников появления определителей 2-го и 3-го порядков являются системы двух и трёх линейных уравнений с двумя и соответственно тремя переменными. Пусть дана система

Комплексные числа
Определение 4. Комплексным числом называется выражение вида а + вi, где а и в –

Перестановки и подстановки
Мы получили два эквивалентных определения определителя третьего порядка (формулы (4) и (5)). С помощью (4) определитель 3-го порядка вводится с помощью определителей второго порядка (разложение по

Определители n-го порядка
Пусть А = произвольная квадратная матрица n-го порядка с действительными (или комплексными) элементами.

Сложение матриц. Умножение матрицы на действительное (комплексное) число
Рассмотрим множество Mmn всех матриц размерности m´n с действительными (комплексными) элементами. Определение 8. Суммой двух матриц одинаков

Простые и двойные суммы
Введём некоторые общематематические понятия и обозначения. Определение 10. Сумма вида а1 + а2 + … +аn называется

Решение матричных уравнений
Рассмотрим простейшие матричные уравнения вида А×Х = В (14) и Х×А = В (15). Возможны два случая: 1) матрица А квадратная невырожденная; 2) матрица А

Линейная зависимость и независимость векторов
Пусть L – линейное пространство над полем Р. Пусть а1, а2, … , аn (*) конечная система векто

Базис векторного пространства. Координаты вектора
Пусть L – линейное пространство над полем Р. Определение 18. Базисом линейного пространства называется любая упорядо

Матрица перехода. Связь координат вектора в разных базисах
Пусть L – линейное пространство над полем Р и пусть в нём зафиксированы два базиса е = (е

Подпространства линейных пространств
Определение 22. Подпространством линейного пространства называется такое множество его элементов, которое само является линейным пространством над тем же полем.

Изоморфизм линейных пространств
Определение 24. Два линейных пространства L и L1 над одним и тем же полем Р называются

Ранг матрицы
Пусть Р некоторое фиксированное поле и пусть А = произвольная матрица размерност

Решение системы линейных уравнений с помощью ранга матрицы
Пусть дана система линейных уравнений (25), коэффициенты которых принадлежат данному полю Р

Пространство решений системы линейных однородных уравнений
Пусть дана система (30) линейных однородных уравнений с коэффициентами из поля Р.

Связь решений однородной и неоднородной систем линейных уравнений
  Пусть (25) произвольная система линейных неоднородных уравнений с коэффициентами из поля

Линейные преобразования линейного пространства
Определение 35. Линейным преобразованием линейного пространства называется линейный оператор данного линейного пространства самого в себя. j : L

Невырожденные линейные преобразования
Пусть Ln – линейное n-мерное пространство над полем Р и пусть j : Ln ® Ln

Собственные векторы и собственные значения линейного преобразования
Пусть Ln – линейное n-мерное пространство над полем Р, j : Ln® Ln

Линейные преобразования в базисе из собственных векторов. Линейные преобразования с простым спектром
Теорема 39. Линейное преобразование j линейного пространства Ln над полем Р имеет в базисе е

Определение 43
а) Р = R Будем говорить, что в действительном линейном пространстве L определено скалярное произведение векторов, если каждой упорядоченной паре

Матрица Грама в евклидовом пространстве
Пусть Еn – n-мерное евклидово пространство и пусть е = (е1, е2,

Ортонормированные базисы в евклидовом пространстве
Определение 51. Базис е = (е1, е2,... , еn) про

Изоморфизм евклидовых пространств
Определение 52. Два евклидовых пространства Е и Е1 называются изоморфными, если они изоморфны

VIII. НЕКОТОРЫЕ ВИДЫ ЛИНЕЙНЫХ ПРЕОБРАЗОВАНИЙ ЕВКЛИДОВЫХ ПРОСТРАНСТВ
Так как евклидовы пространства являются линейными пространствами, то все свойства линейных преобразований линейных пространств верны и в евклидовых пространствах. Но все эти свойства связаны лишь с

Ортогональные линейные преобразования
Определение 53. Линейное преобразование j евклидова пространства Е называется ортогональным, если для любых векторов

Сопряженные линейные преобразования
Пусть j - линейное преобразование евклидова пространства Еn . Определение 55. Линейное преобразование

Самосопряженные (симметрические) линейные преобразования
Определение 56. Линейное преобразование называется самосопряжённым, если оно совпадает со своим сопряжённым преобразованием ( j - самосопряжённое

Линейные формы
Пусть Ln – n-мерное линейное пространство над полем Р и f –линейное отображение пространства Ln

Билинейные формы
Пусть Ln – n-мерное линейное пространство над полем Р . Определение 59. Отображение f

Квадратичные формы
Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана симметрическая билинейная форма f (

Приведение квадратичной формы к каноническому виду с помощью выделения полных квадратов
Пусть Ln – n-мерное линейное пространство над полем Р и пусть на нём задана квадратичная форма j(а

Закон инерции квадратичных форм
Квадратичную форму можно приводить к нормальному виду различными невырожденными линейными преобразованиями (преобразованиями координат). Возникает вопрос: как связаны между собой различные нормальн

Распадающиеся квадратичные формы
Определение 66. Квадратичная форма называется распадающейся, если её можно представить в виде произведения двух линейных форм. Теоре

ВОПРОСЫ ДЛЯ ПОДГОТОВКИ К ЭКЗАМЕНУ
  1. Комплексные числа: определение; алгебраическая форма, сложение и умножение комплексных чисел, заданных в алгебраической форме; изображение комплексных чисел на евклидовой плоскос

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги