рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Точки экстремума.

Точки экстремума. - раздел Математика, Математический анализ. Функции Определение. Функция F(X) Имеет В Точке Х1 Максимум,...

Определение. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Функция f(x) имеет в точке х2 минимум, если f(x2 +Dx) > f(x2) при любом Dх (Dх может быть и отрицательным).

 

Очевидно, что функция, определенная на отрезке может иметь максимум и минимум только в точках, находящихся внутри этого отрезка. Нельзя также путать максимум и минимум функции с ее наибольшим и наименьшим значением на отрезке – это понятия принципиально различные.

 

Определение. Точки максимума и минимума функции называются точками экстремума.

 

Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то производная функции обращается в нуль в этой точке.

 

Доказательство. Предположим, что функция f(x) имеет в точке х = х1 максимум.

Тогда при достаточно малых положительных Dх>0 верно неравенство:

, т.е.

 

Тогда

 

 

По определению:

 

т..е. если Dх®0, но Dх<0, то f¢(x1) ³ 0, а если Dх®0, но Dх>0, то f¢(x1) £ 0.

 

А возможно это только в том случае, если при Dх®0 f¢(x1) = 0.

Для случая, если функция f(x) имеет в точке х2 минимум теорема доказывается аналогично.

Теорема доказана.

 

Следствие. Обратное утверждение неверно. Если производная функции в некоторой точке равна нулю, то это еще не значит, что в этой точке функция имеет экстремум. Красноречивый пример этого – функция у = х3, производная которой в точке х = 0 равна нулю, однако в этой точке функция имеет только перегиб, а не максимум или минимум.

Определение. Критическими точками функции называются точки, в которых производная функции не существует или равна нулю.

Рассмотренная выше теорема дает нам необходимые условия существования экстремума, но этого недостаточно.

 

Пример: f(x) = ôxô Пример: f(x) =

 

y y

 

 

x

 

x

 

В точке х = 0 функция имеет минимум, но В точке х = 0 функция не имеет ни

не имеет производной. максимума, ни минимума, ни произ-

водной.

Вообще говоря, функция f(x) может иметь экстремум в точках, где производная не существует или равна нулю.

 

Теорема. (Достаточные условия существования экстремума)

Пусть функция f(x) непрерывна в интервале (a, b), который содержит критическую точку х1, и дифференцируема во всех точках этого интервала (кроме, может быть, самой точки х1).

Если при переходе через точку х1 слева направо производная функции f¢(x) меняет знак с “+” на “-“, то в точке х = х1 функция f(x) имеет максимум, а если производная меняет знак с “-“ на “+”- то функция имеет минимум.

 

Доказательство.

 

Пусть

 

По теореме Лагранжа имеем: f(x) – f(x1) = f¢(e)(x – x1), где x < e < x1.

 

Тогда: 1) Если х < x1, то e < x1; f¢(e)>0; f¢(e)(x – x1)<0, следовательно

 

f(x) – f(x1)<0 или f(x) < f(x1).

 

2) Если х > x1, то e > x1 f¢(e)<0; f¢(e)(x – x1)<0, следовательно

 

f(x) – f(x1)<0 или f(x) < f(x1).

Так как ответы совпадают, то можно сказать, что f(x) < f(x1) в любых точках вблизи х1, т.е. х1 – точка максимума.

 

Доказательство теоремы для точки минимума производится аналогично. Теорема доказана.

 

На основе вышесказанного можно выработать единый порядок действий при нахождении наибольшего и наименьшего значения функции на отрезке:

 

1) Найти критические точки функции.

2) Найти значения функции в критических точках.

3) Найти значения функции на концах отрезка.

4) Выбрать среди полученных значений наибольшее и наименьшее.

 

– Конец работы –

Эта тема принадлежит разделу:

Математический анализ. Функции

Новороссийск УДК ББК вбя...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Точки экстремума.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Ванин Ю.П.
Математический анализ в упражнениях и задачах: Учебное пособие для вузов. Новороссийск, НФ МГЭИ, 2013. – 130 с.   Пособие написано на основе многолетнего опыта чтения лекций

I. Числовая последовательность, предел последовательности
Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность

Общие свойства
В математическом анализе исходят из определения функции по Лобачевскому и Дирихле. Если каждому числу х из некоторого множества F чисел в силу какого-либо. закона приведено в соответствие число

Выражение тригонометрических функций через одну из них того же аргумента
(выбор знака перед корнем зависит от того, в какой четверти находится угол ) Через sinx:       Через cosx:    

Преобразование степеней синуса и косинуса
        Знаки тригонометрических функций   Некоторые значения тригонометричес

Непрерывность функции
Непрерывные функции.Важный класс функций, изучаемых в М. а., образуют непрерывные функции. Одно из возможных определений этого понятия: функция y=f(x) от одного

Определение производной
Производная               Здесь в логарифм вложена функция синус. Поэтом в начале

Применение дифференциала в приближенных вычислениях
Установленное приближенное равенство позволяет использовать дифференциал для приближенных вычислений значений функции. Запишем приближенное равенство более подробно. Так как , a d

Правило Лопиталя для нахождения предела функции.
1. Теорема. Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных (конечному или бесконечному), если последний существует в указанном с

Производные высших порядков
Производная второго порядка функции Производная второго порядка функции : Пример 1. а) Найти производную второго порядка функции У= Решение. Найдем сначала произво

Исследование функций
План полного исследования функции: 1. Элементарное исследование: - найти область определения и область значений; - выяснить общие свойства: четность (нечетность),

Исследование функции на экстремум с помощью производных высших порядков.
  Пусть в точке х = х1 f¢(x1) = 0 и f¢¢(x1) существует и непрерывна в некоторой окрестности точки х1.  

Астные производные.
Пусть z=f(x,y). Зафиксируем какую-либо точку (x,y), а затем, не меняя закрепленного значения аргумента y, придадим аргументу x приращение Тогда z получит приращен

Геометрическая интерпретация частных производных функции двух переменных
  Пусть уравнение z=f(x,y) –это уравнение поверхности. Проведем плоскость x=const. L- линия пересечения поверхности с плоскостью x=const. При дан

Частные производные высшего порядка. Смешанные производные.
Как уже отмечали, что производные называют частными производными первого порядка или первыми частными производными. Сами частные производные могут являться функциями от нескольких переменных на нек

Дифференциал функции двух переменных
Рассмотрим функцию z = f(x,y), имеющую в точке Р0(х0,у0) частные производные x(х0,у

Способ. Тригонометрическая подстановка.
Теорема: Интеграл вида подстановкой или сводится к интегралу от рациональной функции относительно sint или cost.     Пример:

Способ. Метод неопределенных коэффициентов.
  Рассмотрим интегралы следующих трех типов:   где P(x) – многочлен, n – натуральное число.   Причем интегралы II и III типов могут быть

Понятие определенного интеграла и его свойства
  Пусть на отрезке [a, b] задана непрерывная функция f(x).     y M     m  

Тейлор (1685-1731) – английский математик
  Теорема Тейлора. 1) Пусть функция f(x) имеет в точке х = а и некоторой ее окрестности производные порядка до (n+1) включительно.{ Т.е. и все предыдущие до

Дифференциальные уравнения
  Дифференциа́льное уравне́ние — уравнение, связывающее значение производной функции с самой функцией, значениями независимой переменной, числами (параметра

Основные определения и понятия.
Пусть мы имеем числовую последовательность где Приведем пример числовой последовательности: . Числовой ряд – это сумма членов числовой последовательности вида

Суммой сходящегося числового ряда.
В качестве примера расходящегося ряда можно привести сумму геометрической прогрессии со знаменателем большем, чем единица1+2+4+….+ определяется выражением , Еще одним примером расходящегос

Сходимость числовых положительных рядов
Одной из ключевых задач теории числовых рядов является исследование ряда на сходимость. На практике в подавляющем большинстве примеров сумму ряда находить не требуется

Достаточные признаки сходимости знакоположительного ряда.
При использовании достаточных признаков для исследования числовых рядов на сходимость постоянно необходимо использовать вычисление пределов. Во первых отметим, что для сходимости знакополо

Первый признак сравнения рядов.
Пусть и - два знакоположительных числовых ряда и выполняется неравенство для всех n = 1, 2, 3, ... Тогда из сходимости ряда следует сходимость , а из расходимости ряда следует расхо

Следствие.
Если и , то из сходимости одного ряда следует сходимость другого, а из расходимости следует расходимость. Исследуем ряд на сходимость с помощью второго признака сравнения. В качестве ряда

Третий признак сравнения.
Пусть и - знакоположительные числовые ряды. Если с некоторого номера N выполняется условие , то из сходимости ряда следует сходимость , а из расходимости ряда следует расходимость .

Радикальный признак Коши.
Пусть - знакоположительный числовой ряд. Если , то числовой ряд сходится, если , то ряд расходится. Замечание. Радикальный признак Коши справедлив, если предел бесконечен,

Интегральный признак Коши.
Пусть - знакоположительный числовой ряд. Составим функцию непрерывного аргумента y = f(x), аналогичную функции . Пусть функция y = f(x) положительная, непрерывная и убывающая на

Понятие функционального. Степенной ряда
  Функциональный же ряд состоит из функций: = В общий член ряда j, обязательно входит переменная, которая может обозначаться привычной для математики « х-икс» или «z

Сходимость степенного ряда.
Одной из особенностей степенных рядов является то, что их сходимость зависит от значения х. Так, например, для ряда при значениях х=1 или х ряды являются расходящимся. В тоже время при х ряд предст

Исследование степенного ряда на cходимость
Задание часто формулируют примерно так : Найти интервал сходимости степенного ряда и исследовать его сходимость на концах найденного интервала. Алгоритм решения довольно прост.

Вычисление области и радиуса сходимости степенного ряда.
Для нахождения радиуса сходимости. как уже отмечалось, обычно используют признаки Коши или Даламбера). Пример 2. Решение. Будем исследовать ряд на абсолютную сходимо

Разложение функции в степенной ряд. Ряды Тейлора и Маклорена.
Теорема. Если функция f(x) n раз дифференцируема в некоторой точке , то её можно разложить в окрестности этой точки в степенной ряд (многочлен n- ой степени) вида:

Доказательство.
Пусть имеется функция f(x) . Необходимо представить функцию f(x) многочленом вида (1), которые удовлетворяют условию теоремы, т.е. имеют производные n- го порядка и их значения совпадают в т

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги