рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Дифференциал функции двух переменных

Дифференциал функции двух переменных - раздел Математика, Математический анализ. Функции Рассмотрим Функцию Z = F(X,Y), Имеющую В Точке Р...

Рассмотрим функцию z = f(x,y), имеющую в точке Р0(х0,у0) частные производные x(х0,у0) x + fx + f ; и и и и и (2)


Определение 2. Неопределенным интегралом от функции f(x) называется совокупность всех первообразных для этой функции.
Обозначение: , где c - произвольная постоянная.
Свойства неопределенного интеграла
1Производная неопределенного интеграла: – функция при удачной замене должна легче интегрироваться.

После получения первообразной от переменной t необходимо вернуться к старой переменной.

 

Пример 31.


б) замена t= в интеграле вида:

;
Пример 32.
= -

Пример 33.


4. Метод интегрирования по частям:

Пример 34.


Пример 35.


Возьмем отдельно интеграл

Вернемся к нашему интегралу:


Интегрирование элементарных дробей.

Определение: Элементарныминазываются дроби следующих четырех типов:

I. III.

II. IV.

m, n – натуральные числа (m ³ 2, n ³ 2) и b2 – 4ac <0.

Первые два типа интегралов от элементарных дробей довольно просто приводятся к табличным подстановкой t = ax + b.

I.

II.

Рассмотрим метод интегрирования элементарных дробей вида III.

Интеграл дроби вида III может быть представлен в виде:

 

Здесь в общем виде показано приведение интеграла дроби вида III к двум табличным интегралам.

Рассмотрим применение указанной выше формулы на примерах.

 

Пример.

 

Вообще говоря, если у трехчлена ax2 + bx + c выражение b2 – 4ac >0, то дробь по определению не является элементарной, однако, тем не менее ее можно интегрировать указанным выше способом.

 

Пример.

 

 

 

Пример.

 

 

Рассмотрим теперь методы интегрирования простейших дробей IV типа.

 

Сначала рассмотрим частный случай при М = 0, N = 1.

Тогда интеграл вида можно путем выделения в знаменателе полного квадрата представить в виде . Сделаем следующее преобразование:

.

Второй интеграл, входящий в это равенство, будем брать по частям.

Обозначим:

 

Для исходного интеграла получаем:

 

 

 

 

Полученная формула называется рекуррентной. Если применить ее n-1 раз, то получится табличный интеграл .

 

Вернемся теперь к интегралу от элементарной дроби вида IV в общем случае.

 

 

В полученном равенстве первый интеграл с помощью подстановки t = u2 + s приводится к табличному , а ко второму интегралу применяется рассмотренная выше рекуррентная формула.

Несмотря на кажущуюся сложность интегрирования элементарной дроби вида IV, на практике его достаточно легко применять для дробей с небольшой степенью n, а универсальность и общность подхода делает возможным очень простую реализацию этого метода на ЭВМ.

 

Пример:

 

 

 

Интегрирование рациональных функций.

Интегрирование рациональных дробей.

 

Для того, чтобы проинтегрировать рациональную дробь необходимо разложить ее на элементарные дроби.

 

Теорема: Если - правильная рациональная дробь, знаменатель P(x) которой представлен в виде произведения линейных и квадратичных множителей (отметим, что любой многочлен с действительными коэффициентами может быть представлен в таком виде: P(x) = (x - a)a…(x - b)b(x2 + px + q)l…(x2 + rx + s)m ), то эта дробь может быть разложена на элементарные по следующей схеме:

 

 

где Ai, Bi, Mi, Ni, Ri, Si – некоторые постоянные величины.

При интегрировании рациональных дробей прибегают к разложению исходной дроби на элементарные. Для нахождения величин Ai, Bi, Mi, Ni, Ri, Si применяют так называемый метод неопределенных коэффициентов, суть которого состоит в том, что для того, чтобы два многочлена были тождественно равны, необходимо и достаточно, чтобы были равны коэффициенты при одинаковых степенях х.

Применение этого метода рассмотрим на конкретном примере.

 

 

Пример.

 

Т.к. ( , то

 

Приводя к общему знаменателю и приравнивая соответствующие числители, получаем:

 

 

 

 

 

 

 

 

 

 

Итого:

 

 

 

Пример.

 

 

Т.к. дробь неправильная, то предварительно следует выделить у нее целую часть:

6x5 – 8x4 – 25x3 + 20x2 – 76x – 7 3x3 – 4x2 – 17x + 6

6x5 – 8x4 – 34x3 + 12x2 2x2 + 3

9x3 + 8x2 – 76x - 7

9x3 – 12x2 – 51x +18

20x2 – 25x – 25

 

Разложим знаменатель полученной дроби на множители. Видно, что при х = 3 знаменатель дроби превращается в ноль. Тогда:

3x3 – 4x2 – 17x + 6 x - 3

3x3 – 9x2 3x2 + 5x - 2

5x2 – 17x

5x2 – 15x

- 2x + 6

-2x + 6

Таким образом 3x3 – 4x2 – 17x + 6 = (x – 3)(3x2 + 5x – 2) = (x – 3)(x + 2 )(3x – 1). Тогда:

 

 

 

 

Для того, чтобы избежать при нахождении неопределенных коэффициентов раскрытия скобок, группировки и решения системы уравнений (которая в некоторых случаях может оказаться достаточно большой) применяют так называемый метод произвольных значений. Суть метода состоит в том, что в полученное выше выражение подставляются поочередно несколько (по числу неопределенных коэффициентов) произвольных значений х. Для упрощения вычислений принято в качестве произвольных значений принимать точки, при которых знаменатель дроби равен нулю, т.е. в нашем случае – 3, -2, 1/3. Получаем:

 

Окончательно получаем:

 

=

 

 

 

Пример.

 

Найдем неопределенные коэффициенты:

 

 

 

 

 

 

 

 

 

Тогда значение заданного интеграла:

 

 

 

Интегрирование некоторых тригонометрических

функций.

 

Интегралов от тригонометрических функций может быть бесконечно много. Большинство из этих интегралов вообще нельзя вычислить аналитически, поэтому рассмотрим некоторые главнейшие типы функций, которые могут быть проинтегрированы всегда.

Интеграл вида .

Здесь R – обозначение некоторой рациональной функции от переменных sinx и cosx.

Интегралы этого вида вычисляются с помощью подстановки . Эта подстановка позволяет преобразовать тригонометрическую функцию в рациональную.

,

Тогда

Таким образом:

Описанное выше преобразование называется универсальной тригонометрической подстановкой.

Пример.

Несомненным достоинством этой подстановки является то, что с ее помощью всегда можно преобразовать тригонометрическую функцию в рациональную и вычислить соответствующий интеграл. К недостаткам можно отнести то, что при преобразовании может получиться достаточно сложная рациональная функция, интегрирование которой займет много времени и сил.

Однако при невозможности применить более рациональную замену переменной этот метод является единственно результативным.

 

Пример.

 

 

Интеграл вида если

функция R является нечетной относительно cosx.

 

Несмотря на возможность вычисления такого интеграла с помощью универсальной тригонометрической подстановки, рациональнее применить подстановку t = sinx.

 

Функция может содержать cosx только в четных степенях, а следовательно, может быть преобразована в рациональную функцию относительно sinx.

 

 

Пример.

 

Вообще говоря, для применения этого метода необходима только нечетность функции относительно косинуса, а степень синуса, входящего в функцию может быть любой, как целой, так и дробной.

 

Интеграл вида если

функция R является нечетной относительно sinx.

 

По аналогии с рассмотренным выше случаем делается подстановка t = cosx.

Тогда

 

 

Пример.

 

Интеграл вида

функция R четная относительно sinx и cosx.

 

Для преобразования функции R в рациональную используется подстановка

t = tgx.

Тогда

 

Пример.

 

 

Интеграл произведения синусов и косинусов

различных аргументов.

 

В зависимости от типа произведения применятся одна из трех формул:

 

 

 

 

Пример.

 

 

Пример.

 

Иногда при интегрировании тригонометрических функций удобно использовать общеизвестные тригонометрические формулы для понижения порядка функций.

 

Пример.

 

 

Пример.

 

 

Иногда применяются некоторые нестандартные приемы.

 

Пример.

 

Итого

 

 

– Конец работы –

Эта тема принадлежит разделу:

Математический анализ. Функции

Новороссийск УДК ББК вбя...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Дифференциал функции двух переменных

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Ванин Ю.П.
Математический анализ в упражнениях и задачах: Учебное пособие для вузов. Новороссийск, НФ МГЭИ, 2013. – 130 с.   Пособие написано на основе многолетнего опыта чтения лекций

I. Числовая последовательность, предел последовательности
Определение. Если каждому натуральному числу n поставлено в соответствие число хn, то говорят, что задана последовательность

Общие свойства
В математическом анализе исходят из определения функции по Лобачевскому и Дирихле. Если каждому числу х из некоторого множества F чисел в силу какого-либо. закона приведено в соответствие число

Выражение тригонометрических функций через одну из них того же аргумента
(выбор знака перед корнем зависит от того, в какой четверти находится угол ) Через sinx:       Через cosx:    

Преобразование степеней синуса и косинуса
        Знаки тригонометрических функций   Некоторые значения тригонометричес

Непрерывность функции
Непрерывные функции.Важный класс функций, изучаемых в М. а., образуют непрерывные функции. Одно из возможных определений этого понятия: функция y=f(x) от одного

Определение производной
Производная               Здесь в логарифм вложена функция синус. Поэтом в начале

Применение дифференциала в приближенных вычислениях
Установленное приближенное равенство позволяет использовать дифференциал для приближенных вычислений значений функции. Запишем приближенное равенство более подробно. Так как , a d

Правило Лопиталя для нахождения предела функции.
1. Теорема. Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных (конечному или бесконечному), если последний существует в указанном с

Производные высших порядков
Производная второго порядка функции Производная второго порядка функции : Пример 1. а) Найти производную второго порядка функции У= Решение. Найдем сначала произво

Исследование функций
План полного исследования функции: 1. Элементарное исследование: - найти область определения и область значений; - выяснить общие свойства: четность (нечетность),

Точки экстремума.
Определение. Функция f(x) имеет в точке х1 максимум, если ее значение в этой точке больше значений во всех точках некоторого интервала, содержащего точку х1. Фун

Исследование функции на экстремум с помощью производных высших порядков.
  Пусть в точке х = х1 f¢(x1) = 0 и f¢¢(x1) существует и непрерывна в некоторой окрестности точки х1.  

Астные производные.
Пусть z=f(x,y). Зафиксируем какую-либо точку (x,y), а затем, не меняя закрепленного значения аргумента y, придадим аргументу x приращение Тогда z получит приращен

Геометрическая интерпретация частных производных функции двух переменных
  Пусть уравнение z=f(x,y) –это уравнение поверхности. Проведем плоскость x=const. L- линия пересечения поверхности с плоскостью x=const. При дан

Частные производные высшего порядка. Смешанные производные.
Как уже отмечали, что производные называют частными производными первого порядка или первыми частными производными. Сами частные производные могут являться функциями от нескольких переменных на нек

Способ. Тригонометрическая подстановка.
Теорема: Интеграл вида подстановкой или сводится к интегралу от рациональной функции относительно sint или cost.     Пример:

Способ. Метод неопределенных коэффициентов.
  Рассмотрим интегралы следующих трех типов:   где P(x) – многочлен, n – натуральное число.   Причем интегралы II и III типов могут быть

Понятие определенного интеграла и его свойства
  Пусть на отрезке [a, b] задана непрерывная функция f(x).     y M     m  

Тейлор (1685-1731) – английский математик
  Теорема Тейлора. 1) Пусть функция f(x) имеет в точке х = а и некоторой ее окрестности производные порядка до (n+1) включительно.{ Т.е. и все предыдущие до

Дифференциальные уравнения
  Дифференциа́льное уравне́ние — уравнение, связывающее значение производной функции с самой функцией, значениями независимой переменной, числами (параметра

Основные определения и понятия.
Пусть мы имеем числовую последовательность где Приведем пример числовой последовательности: . Числовой ряд – это сумма членов числовой последовательности вида

Суммой сходящегося числового ряда.
В качестве примера расходящегося ряда можно привести сумму геометрической прогрессии со знаменателем большем, чем единица1+2+4+….+ определяется выражением , Еще одним примером расходящегос

Сходимость числовых положительных рядов
Одной из ключевых задач теории числовых рядов является исследование ряда на сходимость. На практике в подавляющем большинстве примеров сумму ряда находить не требуется

Достаточные признаки сходимости знакоположительного ряда.
При использовании достаточных признаков для исследования числовых рядов на сходимость постоянно необходимо использовать вычисление пределов. Во первых отметим, что для сходимости знакополо

Первый признак сравнения рядов.
Пусть и - два знакоположительных числовых ряда и выполняется неравенство для всех n = 1, 2, 3, ... Тогда из сходимости ряда следует сходимость , а из расходимости ряда следует расхо

Следствие.
Если и , то из сходимости одного ряда следует сходимость другого, а из расходимости следует расходимость. Исследуем ряд на сходимость с помощью второго признака сравнения. В качестве ряда

Третий признак сравнения.
Пусть и - знакоположительные числовые ряды. Если с некоторого номера N выполняется условие , то из сходимости ряда следует сходимость , а из расходимости ряда следует расходимость .

Радикальный признак Коши.
Пусть - знакоположительный числовой ряд. Если , то числовой ряд сходится, если , то ряд расходится. Замечание. Радикальный признак Коши справедлив, если предел бесконечен,

Интегральный признак Коши.
Пусть - знакоположительный числовой ряд. Составим функцию непрерывного аргумента y = f(x), аналогичную функции . Пусть функция y = f(x) положительная, непрерывная и убывающая на

Понятие функционального. Степенной ряда
  Функциональный же ряд состоит из функций: = В общий член ряда j, обязательно входит переменная, которая может обозначаться привычной для математики « х-икс» или «z

Сходимость степенного ряда.
Одной из особенностей степенных рядов является то, что их сходимость зависит от значения х. Так, например, для ряда при значениях х=1 или х ряды являются расходящимся. В тоже время при х ряд предст

Исследование степенного ряда на cходимость
Задание часто формулируют примерно так : Найти интервал сходимости степенного ряда и исследовать его сходимость на концах найденного интервала. Алгоритм решения довольно прост.

Вычисление области и радиуса сходимости степенного ряда.
Для нахождения радиуса сходимости. как уже отмечалось, обычно используют признаки Коши или Даламбера). Пример 2. Решение. Будем исследовать ряд на абсолютную сходимо

Разложение функции в степенной ряд. Ряды Тейлора и Маклорена.
Теорема. Если функция f(x) n раз дифференцируема в некоторой точке , то её можно разложить в окрестности этой точки в степенной ряд (многочлен n- ой степени) вида:

Доказательство.
Пусть имеется функция f(x) . Необходимо представить функцию f(x) многочленом вида (1), которые удовлетворяют условию теоремы, т.е. имеют производные n- го порядка и их значения совпадают в т

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги