рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Второй замечательный предел

Второй замечательный предел - раздел Математика, А. Множества и операции над ними. Действительные числа Рассмотрим Числовую Последовательность ...

Рассмотрим числовую последовательность , где , С ростом основание степени уменьшается до единицы, а показатель растет до бесконечности, поэтому ничего конкретного о поведении сказать нельзя. Для вычисления воспользуемся выражением для бинома Ньютона:

. (0.0.1)

В нашем случае

.

Из полученного выражения следует, что с увеличением величина растет. Действительно, перейдем от к . Это приведет к тому, что число слагаемых возрастет на одно. Кроме того, величина множителей, заключенных в скобки, тоже возрастет, так как . Но если увеличивается число слагаемых и сами слагаемые растут, то . Значит, числовая последовательность монотонно возрастает.

Докажем теперь, что данная последовательность ограничена сверху. Заменим все скобки вида единицей. Так как , то

.

Кроме того , ,..., . Значит,

.

В правой части неравенства после цифры 2 стоит убывающая геометрическая прогрессия. Как известно, сумма первых членов такой прогрессии равна: . В нашем случае . С ростом величина будет, очевидно, стремится к единице. Значит, , то есть, ограничено сверху.

Итак, мы получили, что . Но так как монотонно возрастающая последовательность ограниченная сверху, то она имеет предел:

Можно доказать, что данный предел справедлив не только для натуральных чисел, но и для любых значений :

.

Полученное выражение и называется вторым замечательным пределом.

Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, т.е. докажем, что . Рассмотрим два случая:

1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где n = [x] - это целая часть x.

Отсюда следует: , поэтому

.

Если , то . Поэтому, согласно пределу , имеем:

.

По признаку (о пределе промежуточной функции) существования пределов .

2. Пусть . Сделаем подстановку − x = t, тогда

.

Из двух этих случаев вытекает, что для любого x.

 

 

– Конец работы –

Эта тема принадлежит разделу:

А. Множества и операции над ними. Действительные числа

Множества и действия над ними... Множеством именуется некоторая совокупность элементов объединенных по какому либо признаку Если есть такая совокупность разумеется как единое...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Второй замечательный предел

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Теорема 1 (свойства счетных множеств).
-Всякое бесконечное множество содержит счетное подмножество. -Сумма любого конечного или счетного множества счетных множеств есть счетное множества. -Всякое подмн

Б. Последовательность и ее предел.
1. Последовательность, предел последовательности.  

Свойства
-Ограниченность. -Всякая неубывающая последовательность ограничена снизу. -Всякая невозрастающая последовательность ограничена сверху. -Всякая монотонная последовательнос

В. Предел функции, непрерывные функции.
1. Определение предела функции по Коши и по Гейне. Односторонние пределы.   Определение предела по Коши. Число A называется пределом фу

Расширенное свойство предела суммы
Предел суммы нескольких функций равен сумме пределов этих функций: Аналогично предел р

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги