рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Линейные пространства

Линейные пространства - раздел Математика, Обратная матрица. Решение матричных уравнений Определение Линейного Пространства   ...


Определение линейного пространства

 

Пусть V - непустое множество (его элементы будем называть векторами и обозначать ...), в котором установлены правила:

1) любым двум элементам соответствует третий элемент называемый суммой элементов (внутренняя операция);

2) каждому и каждому отвечает определенный элемент (внешняя операция).

Множество V называется действительным линейным (векторным) пространством, если выполняются аксиомы:

I.

II.

III. (нулевой элемент, такой, что ).

IV. (элемент, противоположный элементу ), такой, что

V.

VI.

VII.

VIII.
Аналогично определяется комплексное линейное пространство (вместо R рассматривается C).


Подпространство линейного пространства

 

Множество называется подпространством линейного пространства V, если:

1)

2)

 

 

№23

Система векторов линейного пространства L образует базис в L если эта система векторов упорядочена, линейно независима и любой вектор из L линейно выражается через векторы системы.

Иными словами, линейно независимая упорядоченная система векторов e1, ..., en
образует базис в L если любой вектор x из L может быть представлен в виде

x = С1·e12·e2+ ...+Сn· en.

 

Можно определить базис иначе.

Любая упорядоченная линейно независимая система e1, ..., en векторов n-мерного линейного пространства Ln образует базис этого пространства.

Поскольку n, размерность пространства Ln— максимальное количество линейно независимых векторов пространства, то система векторов x,e1, ..., en линейно зависима и, следовательно, вектор x линейно выражается через векторы e1, ..., en:

x = x1·e1+ x2·e2+ ...+ xn· en.

Такое разложение вектора по базису единственно.

 

Теорема 1. (О числе векторов в линейно независимых и порождающих системах векторов.) Число векторов в любой линейно независимой системе векторов не превосходит числа векторов в любой порождающей системе векторов этого же векторного пространства.

Доказательство. Пусть произвольная линейно независимая система векторов, - произвольная порождающая система. Допустим, что .

Мы можем считать, что все векторы порождающей системы ненулевые, т.к. нулевые векторы можно удалить из системы и оставшаяся система векторов, очевидно, остается порождающей.

Т.к. порождающая система, то она представляет любой вектор пространства, в том числе и вектор . Присоединим его к этой системе. Получаем линейно зависимую и порождающую систему векторов: . Тогда найдется вектор этой системы, который линейно выражается через предыдущие векторы этой системы и его, в силу леммы, можно удалить из системы, причем оставшаяся система векторов будет по-прежнему порождающей.

Перенумеруем оставшуюся систему векторов: . Т.к. эта система порождающая, то она представляет вектор и, присоединяя его к этой системе, опять получаем линейно зависимую и порождающую систему: .

Далее все повторяется. Найдется вектор в этой системе, который линейно выражается через предыдущие, причем это не может быть вектор , т.к. исходная система линейно независимая и вектор не выражается линейно через вектор . Значит, это может быть только один из векторов . Удаляя его из системы , получаем, после перенумерования, систему , которая будет порождающей системой. Продолжая этот процесс, через шагов получим порождающую систему векторов: , где , т.к. по нашему предположению . Значит, эта система, как порождающая, представляет и вектор , что противоречит условию линейной независимости системы .

Теорема 1 доказана.

Теорема 2. (О количестве векторов в базисе.) В любом базисе векторного пространства содержится одно и тоже число векторов.

Доказательство. Пусть и – два произвольных базиса векторного пространства. Любой базис является линейно независимой и порождающей системой векторов.

Т.к. первая система линейно независимая, а вторая – порождающая, то, по теореме 1, .

Аналогично, вторая система линейно независимая, а первая – порождающая, то . Отсюда следует, что , ч.т.д.

Теорема 2 доказана.

Данная теорема позволяет ввести следующее определение.

Определение. Размерностью векторного пространства V над полем K называется число векторов в его базисе.

Обозначение: или .

 

№24

Координа́ты ве́ктора ― коэффициенты единственно возможной линейной комбинации базисных векторов в выбранной системе координат, равной данному вектору.

где — координаты вектора.

 

Свойства

· Равные векторы в единой системе координат имеют равные координаты

· Координаты коллинеарных векторов пропорциональны:

Подразумевается, что координаты вектора не равны нулю.

· Квадрат длины вектора равен сумме квадратов его координат:

· При умножении вектора на действительное число каждая его координата умножается на это число:

· При сложении векторов соответствующие координаты векторов складываются:

· Скалярное произведение двух векторов равно сумме произведений их соответствующих координат:

· Векторное произведение двух векторов можно вычислить с помощью определителя матрицы

где

· Аналогично, смешанное произведение трех векторов можно найти через определитель

 

Ма́трицей перехо́да от базиса к базису является матрица, столбцы которой — координаты разложения векторов в базисе .

Обозначается

Представление

Так как

.

.

.

.

Матрица перехода это


 

Свойства

· Матрица перехода является невырожденной. То есть определитель этой матрицы не равен нулю.

·

 

№25

– Конец работы –

Эта тема принадлежит разделу:

Обратная матрица. Решение матричных уравнений

Обра тная ма трица такая матрица A при умножении на которую исходная матрица A да т в результате единичную матрицу E... Квадратная матрица обратима тогда и только тогда когда она невырожденная то есть е определитель не равен нулю Для...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Линейные пространства

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Матричные уравнения решаются с помощью умножения уравнения на обратные матрицы.
Например, чтобы найти матрицу из уравнения

Линейные подпространства
Рассмотрим некоторое подмножество X1 линейного пространства X , т.е. X1 Н X . Определение. Подмножество

Матрица линейного преобразования
В примере 19.4 было показано, что преобразование -мерного пространства, заключающееся в умножении коор

Произведение линейного преобразования на число.
  Пусть – линейное преобразование линейного пространства L над полем

Сложение и вычитание линейных преобразований.
  Пусть даны линейные преобразования и

Умножение линейных преобразований.
  В линейном пространстве даны линейные преобразования

Свойства линейных операций над матрицами
  Операции сложения матриц и умножения матрицы на число называются линейными операциями над матрицами. Непосредственно из определений вытекают следующие

Норма вектора
Норма в векторном пространстве над полем вещественных или комплексных чисел — это функционал

Формулировка
Пусть дано линейное пространство со скалярным произведением

Комментарии
В конечномерном случае можно заметить, что , где

Доказательство
· Если то

Квадратичные формы
Определение квадратичной формы   Квадратичная форма переменных

Канонический вид квадратичной формы
  Квадратичная форма называется канонической, если все т. е.

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги