ФУНКЦИИ СЛУЧАЙНЫХ ВЕЛИЧИН

а) Функция одного случайного аргумента.

Если каждому возможному значению случайной величины Х соответствует одно возможное значение случайной величины У, то У называют функцией случайного аргумента Х. У = φ(Х).

Пусть аргумент Х дискретная случайная величина. Тогда случайная величина У = φ(Х) также дискретная случайная величина.

Если аргумент Х принимает значение хi с вероятностью Рxi, то случайная величина У принимает значение с той же вероятностью .

Пусть аргумент Х – непрерывная случайная величина, заданная плотностью распределения f(x). Если у = φ(х) – дифференцируемая, строго возрастающая или строго убывающая функция, обратная функция которой х = ψ(y), то плотность распределения g(у) случайной величины У находится:

. (7.1)

Если функция У = φ(Х) в интервале возможных значений Х не монотонна, то следует разбить этот интервал на такие интервалы, в которых функция φ(х) монотонна, и найти плотности распределения gi(у) для каждого из интервалов монотонности, а затем предоставить g(у) в виде суммы:

. (7/2)

Например, если функция φ(х) монотонна на двух интервалах, в которых соответствующие обратные функции и то

. (7.3)

б) Функция двух случайных аргументов.

Если каждой паре возможных значений случайна величин Х и У соответствует одно возможное значение случайной величины Z, то Z называют функцией двух случайных аргументов Х и У.

. (7/4)

Если Х и У – дискретные независимые случайные величины, то для того чтобы, найти распределение функции Z = X + Y надо найти все возможные значения и их вероятности .

Если Х и У – непрерывные случайные величины , то плотность распределения g(z) суммы Z = X + Y, при условии, что плотность распределения хотя бы одного из аргументов задана в интервале (- ∞; ∞), находится по формуле:

, или , (7/5)

где f1 и f2 – плотности распределения аргументов Х и У.

Если возможные значения аргументов неотрицательны, то плотность распределения g(z) величины Z = X + Y находят по формуле:

, или . (7.6)

Если Х и У – независимые случайные величины, заданные соответствующими плотностями распределения и , то вероятность попадания случайной точки (Х, У) в область S равна:

. (7.7)

 

1. Дискретная случайная величина задана законом распределения:

 

Х
р 0,3 0,5 0,2

 

Найти закон распределения случайной величины У, где: а) У=2Х-1;

б) У=Х+5; в) У=Х2-2; г) У= . Определить М(У).

 

2. Дискретная случайная величина Х задана законом распределения:

 

Х -2 -1
р 0,2 0,4 0,1 0,3

 

Найти закон распределения случайной величины У, где: а) У=2Х+1; б)У=Х3-1; в) У=Х2; г) У= . Определить М(У).

 

3. Дискретная случайная величина Х задана законом распределения:

 

Х
р 0,1 0,3 0,2 0,4

 

Найти математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины У, если: а) У=4Х-4; б) У=Х2.

 

4. Дискретная случайная величина Х задана законом распределения:

 

Х      
р 0,2 0,7 0,1

 

Найти: а) закон распределения случайной величины У=sin2 X; б) математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины У.

5. Случайная величина Х равномерно распределена на интервале (2;10). Найти дифференциальную функцию случайной величины: а) Y = 0,5 X – 1; б) Y = X2; в) . Определить М(У), Д(У), σ(У).

6. Случайная величина Х равномерно распределена в интервале ( - ; ). Найти дифференциальную функцию случайной величины:

а) Y = sin X; б) У= cos X.

7. Случайная величина Х распределена нормально с параметрами а = 2, =1. Найти дифференциальную функцию случайной величины:

а) У=2Х+6; б) У=Х3.

8. Непрерывная случайная величина Х задана функцией

 

Найти дифференциальную функцию случайной величины: а) ; б) .

9. Сторона квадрата Х имеет равномерное распределение на отрезке [1;2]. Найти плотность вероятности площади квадрата.

10. Случайная величина Х распределена по закону Коши:

.

Найти дифференциальную функцию случайной величины: а) У=Х3;

б) У=3Х.

11. Независимые случайные величины Х и У распределены равномерно. Случайная величина Х распределена в интервале (0; 2), а случайная величина У в интервале (0; 10). Найти интегральную и дифференциальную функции случайной величины Z=X+У. Построить графики интегральной и дифференциальной функций случайной величины Z.

12. Случайная величина Х равномерно распределена в интервале (-4; 1), а случайная величина У равномерно распределена в интервале (1; 6). Найти дифференциальную функцию случайной величины Z=X+У и начертить ее график.

13. Независимые случайные величины Х и У заданы дифференциальными функциями:

 

Найти дифференциальную функцию случайной величины Z=X+У.

14. Независимые случайные величины Х и У распределены по нормальному закону:

, .

Найти дифференциальную функцию случайной величины Z=X+У. Показать, что случайная величина Z распределяется по нормальному закону.

15. Натуральный логарифм некоторой случайной величины Х распределен по нормальному закону с центром рассеивания и средним квадратическим отклонением . Найти плотность распределения случайной величины Х.

 

8 ЗАКОН БОЛЬШИХ ЧИСЕЛ

 

Закон больших чисел представляет собой наиболее общий принцип в результате которого количественные закономерности, присущие массовым случайным явлениям отчетливо проявляются при достаточно большом числе наблюдений.

Лемма Чебышева. Если все значения случайной величины Х неотрицательны, то вероятность того, что случайная величина Х будет не меньше некоторого числа t > 0 не больше, чем .

. (8.1)

Неравенство Чебышева. Вероятность того, что абсолютное отклонение случайной величины Х от ее математического ожидания меньше некоторого числа ε > 0, не меньше чем .

. (8.2)

Теорема Чебышева. Если попарно – независимые случайные величины имеют конечные математические ожидания, дисперсии каждой из случайной величины не превосходят постоянного числа С, то среднее арифметическое этих величин сходится по вероятности к среднему арифметическому их математических ожиданий. Если , то

. (8.3)

Воспользовавшись неравенством Чебышева, получаем

. (8.4)

 

1. Цена акций коммерческой фирмы, реализуемых на фондовом рынке, является случайной величиной, математическое ожидание которой равно 6 тыс. руб. Оценить вероятность того, что в ближайшие сутки цена акций превысит 10 тыс. руб.

2. Количество электроэнергии, потребляемой поселком в течении суток, является случайной величиной, математическое ожидание которой равно 4 тыс. кВт.- ч. Оценить вероятность того, что в ближайшие сутки потребление энергии: а) превысит 8 тыс. кВт.- ч.; б) не превысит 6 тыс. кВт.- ч.

3. Пользуясь неравенством Чебышева, оценить вероятность того, что из посеянных 5000 семян число взошедших окажется от 3750 до 4250, если известно, что М(Х) = 4000. Определить вероятность попадания случайной величины в данный интервал.

4. Вероятность вызревания семян овощной культуры в данной местности составляет 0,8. С помощью неравенства Чебышева оценить вероятность того, что из 1000 растений число растений с вызревшими семенами составит от 750 до 850. Определить вероятность попадания случайной величины в данный интервал.

5. В организации имеется 100 автомобилей. Вероятность безотказной работы каждого из них в течение определенного периода составляет 0,9. С помощью неравенства Чебышева оценить вероятность того, что: а) отклонение числа безотказно работавших автомобилей за определенный период от его математического ожидания не превзойдет по модулю 5; б) отклонение доли безотказно работающих автомобилей от постоянной вероятности 0,9 по модулю будет меньше 0,06.

6. Дискретная случайная величина Х задана законом распределения:

 

Х
р 0,1 0,4 0,3 0,2

 

Используя неравенство Чебышева, оценить вероятность того, что

>3.

7. Дискретная случайная величина Х задана законом распределения:

 

Х -1
р 0,1 0,2 0,4 0,2 0,1

 

Используя неравенство Чебышева, оценить вероятность того, что

< 2,5.

8. Случайная величина Х задана дифференциальной функцией:

 

а) С помощью неравенства Чебышева оценить вероятность того, что . б) Определить вероятность того, что .

9. Случайная величина задана интегральной функцией:

 

а) С помощью неравенства Чебышева оценить вероятность того, что

< . б) Определить вероятность того, что < .

10. Случайная величина задана интегральной функцией

 

а) используя неравенство Чебышева, оценить вероятность того, что

<а; б) определить вероятность того, что <а.

11. Выборочным способом определяют вес колосьев ячменя. Сколько необходимо отобрать колосьев, чтобы с вероятностью не меньшей 0,99, можно было утверждать, что средний вес случайно отобранных колосьев будет отличаться от среднего веса колосьев во всей партии (принимаемого за математическое ожидание) не более чем на 0,1 г? Установлено, что среднее квадратическое отклонение веса не превышает 0,2 г.

12. Сколько человек необходимо отобрать для определения удельного веса лиц со специальным образованием, чтобы с вероятностью 0,95 можно было утверждать, что отклонение относительной частоты лиц со специальным образованием от их доли, принимаемой за постоянную вероятность, не превышало по модулю 0,04.