рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Види бінарних відношень

Види бінарних відношень - раздел Математика, Основи Дискретної математики   Бінарне Відношення R На Множині А Називається ...

 

Бінарне відношення R на множині А називається симетричним, якщо <x,yR Þ <y,xR. Пару виду <y,x> назвемо оберненою до пари виду <x,y>.

Наприклад, нехай на множині А={a,b,c,d} задано відношення R={<b,c>,<d,d>,<a,d>,<c,b>,<d,a>}. Неважко перевірити безпосередньо, що з кожною парою виду <x,y> відношення R містить пару виду <y,x> (дo пари <b,c> у відношенні є обернена пара <c,b> й навпаки, дo пари <a,d> – пара <d,a>, пара <d,d> збігається з оберненою до неї), отже, R симетричне. Симетричним є відношення B={<x,y>| x,y – брати}, задане на множині людей. Дійсно, <x,yB Þ x,y – брати Þ y,x – брати Þ <y,x>ÎВ, тобто умова симетричності для відношення В виконується. Відношення R={<x,y>| x – брат y}, задане на множині людей, не є симетричним, оскільки з того, що <x,yR, не випливає, що <y,xR, адже не обов’язково у є братом х, коли х є братом у (у може виявитися сестрою х). Не є симетричним й відношення {<b,c>,<a,b>,<b,a>}, задане на множині А, тому що воно не містить пари, оберненої до пари <b,c>.

Бінарне відношення R на множині А назвемо антисиметричним, якщо <x,yR, <y,xR Þ x=y, тобто якщо R містить пару виду <x,y>, яка складається з різних елементів, то R не містить обернену до неї пару виду <y,x>.

Наприклад, відношення R={<c,d>,<a,a>,<c,c>,<b,a>}, задане на множині A={a,b,c,d}, антисиметричне, оскільки кожна пара, що належить відношенню разом з оберненою до неї парою, складається з однакових елементів (<a,aR, <а,аR Þ а=а; <с,сR, <с,сR Þ с=с). Антисиметричним є також відношення Q={<a,b>,<c,d>,<b,c>} на множині А, тому що Q не містить жодної пари виду <x,y> такої, що х та у різні й <у,х> належить Q (тобто умова антисиметричності не порушується для Q). Відношення R={<a,b>,<b,b>, <b,a>} на А не антисиметричне, тому що <a,bR, <b,aR, але a¹b. Антисиметричним є відношення ³ на множині N, оскільки n³m, m³n Þ n=m. Відношення > теж є антисиметричним на N, тому що коли n>m, то m не може бути більше, ніж n, отже, умова антисиметричності не порушується для відношення > (адже якщо пари виду <n,m> та <m,n> не можуть одночасно належати відношенню >, то й вимагати виконання умови n=m не потрібно). Відношення В={<x,y>| x,y – брати} на множині людей не є антисиметричним, оскільки з того, що <x,yB та <y,xB не випливає, що x=y (адже коли x,y – брати та у,х – брати, то це не означає, що х та у – одна й та сама людина).

Відношення R на множині А називається асиметричним, якщо <x,yR Þ <y,xR, тобто для жодної пари, що належить асиметричному відношенню, у цьому відношенні не існує оберненої пари.

Наприклад, відношення {<b,d>,<c,a>} на множині А асиметричне (містить пару <b,d>, але не містить обернену до неї пару, тобто <d,b>; містить пару <c,a>, але не містить обернену до неї пару <a,c>). Відношення {<b,d>,<a,c>,<c,a>} на A не асиметричне, тому що разом з парою <a,c> містить обернену до неї пару <c,a>. Відношення {<a,b>,<c,c>} на А також не асиметричне, бо разом з парою <c,c> містить обернену до неї пару <c,c>.

Відношення R на множині А називається рефлексивним, якщо для будь-якого хÎА <x,xR, тобто іАÍR.

Наприклад, відношення R={<1,2>,<2,2>,<2,1>,<1,1>,<3,3>,<3,2>}, задане на множині А={1,2,3}, є рефлексивним, оскільки містить усі діагональні пари множини А. Рефлексивним є відношення R={<x,y>| x та y – однолітки}, задане на множині людей, тому що твердження «х та х – однолітки» істинне для будь-якого х з множини людей, отже, R містить усі пари виду <x,x>. Прикладом нерефлексивного відношення на множині А є {<2,1>,<3,3>,<2,3>,<1,1>}, оскільки воно містить не усі діагональні пари множини А (у відношенні немає пари <2,2>). Відношення {<x,y>| x та y – студенти} на множині людей не рефлексивне, оскільки твердження «х та х – студенти» істинне не для кожного х з множини людей, а тільки для тих х, які є студентами (адже не усі люди є студентами).

Відношення R на множині А називається антирефлексивним (або іррефлексивним), якщо для усіх х з А <x,xR, тобто R не містить жодної діагональної пари множини А.

Наприклад, відношення {<1,2>,<3,1>,<2,3>} на множині {1,2,3} антирефлексивне, оскільки не містить жодної діагональної пари. Антирефлексивним є відношення {<x,y>| x та y – брати} на множині людей, оскільки твердження «х та х – брати» хибне для будь-якого х (адже жодна людина не може бути братом самої себе), отже, дане відношення не містить жодної діагональної пари. Прикладом не антирефлексивного відношення є відношення R={<x,y>| x ділиться на y} на множині N+. Зрозуміло, що R містить діагональні пари (твердження «х ділиться на х» істинне для будь-якого хÎN+). Відношення {<1,1>,<2,1>,<1,2>} на множині {1,2} не антирефлексивне, бо містить діагональну пару <1,1>.

Відношення R на множині А називається транзитивним, якщо <x,yR, <y,zR Þ <x,zR. Зрозуміло, що відношення R не транзитивне тоді й тільки тоді, коли для деяких x, у, z з множини А одночасно виконуються умови: <x,yR, <y,zR, <x,zR.

Наприклад, відношення {<2,3>,<2,2>,<3,2>,<3,3>}, задане на множині А={1,2,3}, транзитивне, оскільки разом з парами <2,3> та <3,2> містить пару <2,2>, разом з парами <2,3> та <3,3> містить пару <2,3>, разом з парами <2,2> та <2,3> містить пару <2,3>, разом з парами <2,2> та <2,2> містить пару <2,2>, разом з парами <3,2> та <2,3> містить пару <3,3>, разом з парами <3,2> та <2,2> містить пару <3,2>, разом з парами <3,3> та <3,2> містить пару <3,2>, разом з парами <3,3> та <3,3> містить пару <3,3>. Таким чином, для кожного набору пар виду <x,y>, <y,z>, що належать даному відношенню, існує пара виду <x,z>, яка теж належить цьому відношенню. Відношення {<1,2>,<1,3>} на множині А також транзитивне, оскільки не існує такого набору пар виду <x,y>, <y,z>, що <x,yR й <y,zR, а <x,zR. Транзитивним є й відношення R={<x,y>| x,y – парні числа} на множині N. Дійсно, нехай <x,yR й <y,zR, тобто х,у – парні числа та у,z – парні числа. Зрозуміло, що тоді х,z – парні числа, тобто <x,zR. Прикладом не транзитивного відношення на множині А є R={<2,1>,<1,2>,<2,2>}, оскільки R містить пари <1,2> та <2,1>, але не містить пари <1,1>. Відношення {<x,y>| x – дідусь y} на множині людей не транзитивне, оскільки з того, що х є дідусем у, а у є дідусем z не випливає, що х є дідусем z.

Теорема 6. Нехай R – бінарне відношення на множині А. Тоді:

а) якщо R симетричне, то R=R-1;

б) якщо R рефлексивне та транзитивне, то R*R=R.

Доведемо твердження а). Покажемо спочатку, що коли R симетричне, то RÍR-1. Нехай <x,yR. Оскільки R симетричне, то <у,хR. Використовуючи визначення відношення, оберненого до даного, маємо <x,yR-1, що й треба було довести. Покажемо тепер, що R-1ÍR. Нехай <x,yR-1. Тоді <у,хR. З симетричності R випливає, що <x,yR. Таким чином, R-1ÍR. Отже, R-1=R.

Доведемо твердження б). Нехай <x,yR*R. Це означає, що у множині А існує такий елемент z, що <x,zR та <z,yR. Але R транзитивне, тому <x,уR, тобто R*RÍR. Покажемо, що RÍR*R. Нехай <x,yR. Оскільки R рефлексивне, то <у,уR, отже, <х,уR*R, тобто RÍR*R. Таким чином, R=R*R.

 

– Конец работы –

Эта тема принадлежит разделу:

Основи Дискретної математики

Київський національний університет технологій та дизайну... М К МОРОХОВЕЦЬ...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Види бінарних відношень

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

КИЇВ КНУТД 2005
  УДК 51.681.3517   Конспект лекцій з курсу “Основи дискретної математики” для студентів спеціальності “Комп’ютерні науки” 6.0402 / Автор М.К.Мороховец

Лекція 1. Поняття множини. Операції над множинами
    Теорія множин як математична дисципліна створена німецьким мате-матиком Г.Кантором. Згідно з його визначенням, множиною є довільне зі-брання певних об’єктів н

Способи подання множин
  Множина може бути задана явно або неявно. Якщо об’єктів, що склада-ють множину, небагато, множина задається явно шляхом перерахування цих об’єктів (а точніше, їх імен). На письмі мн

Включення та рівність множин
Нехай А та В – множини. Будемо говорити, що А включається у В, або А є підмножиною В (й позначати АÍВ), якщо кожен елемент множини

Операції над множинами
  Об’єднанням множин А та В (позначається АÈВ) називається множина усіх об’єктів, що є елементами множини А або В, тобто А

Властивості операцій над множинами
Теорема 1. Для будь-яких підмножин А, В, С універсальної множини U наведені нижче рівності є тотожностями (вираз А' слід розуміти як UА

Булеан множини
  Кожна непорожня множина Х має принаймні дві різні підмножини: Æ та Х. Крім того, кожен елемент множини Х визначає деяку підмножину множини Х: якщо

Задачі та вправи
  І. Описати словами множини: 1) {x| x=2y+1, yÎN}, 2) {x| x=2y-1, yÎN},

Декартів добуток множин
  Упорядкованою парою об’єктів х та y (позначається <x,y>) будемо називати сукупність двох об’єктів (не обов’язково різних), які розташовані у

Поняття відношення
  Термін «відношення» застосовується у математиці для позначення певного зв’язку між об’єктами. Відношенням R, заданим на множинах А та В, називається довільна підмножина декар

Операції над відношеннями
  Нехай R1, R2 – відношення, задані на множинах A1,…,An. Об’єднанням відношень R1 та R2

Відношення еквівалентності
  Рефлексивне, симетричне та транзитивне відношення на множині А називається відношенням еквівалентності на А. Прикладом відношення еквівалентності на мн

Фактор-множина
  Нехай R – відношення еквівалентності на А. Тоді, як відомо, існує розбиття множини А, яке визначається відношенням R. Позначимо це розбиття через А

Замикання відношень
  Рефлексивним замиканням бінарного відношення R, заданого на множині А (позначається Rr), називається відношення Rr=i

Задачі та вправи
  І. Чи існують на множині {1,2,3,4} такі два різні відношення R та S, що: 1) Rr=Sr; 2) Rs=Ss; 3)

Відношення часткового порядку
  Бінарне відношення R, задане на множині А, називається відношенням часткового порядку (частковим порядком на А), якщо R рефлексивне, антиси

Відношення лінійного та повного порядку
  Відношенням лінійного порядку (лінійним порядком) на множині А називається такий частковий порядок на множині А, відносно якого порівнюються будь-які еле

Задачі та вправи
  І. Які з відношень завдань XXVIІ-XXІX до попереднього розділу є відношен-нями: 1) часткового порядку, 2) строгого порядку, 3) передпорядку, 4) лінійного порядку, 5) повного порядку.

Поняття відображення
  Відношення R, задане на множинах А та В, називається функціональним, якщо для кожного елемента xÎА існує не більше одного елемента

Види відображень
  Відображення F множини А у множину В називається відображенням А на В (або сюр’єктивним відображенням, або сюр’єкцією), як

Задачі та вправи
  І. Визначити, які з відображень є: а) частковими, б) сюр’єктивними, в) ін’єктивними, г) взаємно однозначними. А={a,b,c,d}, B={b

Рівнопотужні множини
  Множини А та В називаються рівнопотужними (еквівалентними), якщо існує взаємно однозначне відображення А на В. Наприклад, множини

Потужність множини
  Визначимо відношення ~ на множині усіх множин U: A~В Û А та В рівнопотужні. Дане відношення рефлексивне (А~А), симетричне (якщ

Трансфінітна індукція
  Твердження, що стосуються елементів деякої повністю упорядкованої множини, можна доводити, використовуючи метод трансфінітної індукції, який є узагальненням методу математичної інду

Задачі та вправи
  І. Навести приклад множини Y, еквівалентної множині X={1,2,3,4,5}. Скільки взаємно однозначних відображень існує між Х та Y? ІІ. Чи рівнопотужні

СПИСОК ВИКОРИСТАНОЇ ТА РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ
    1. Биркгоф Г., Барти Т. Современная прикладная алгебра. – М.: Мир, 1976. – 400 с. 2. Глушков В.М., Цейтлин Г.Е., Ющенко Е.Л. Алгебра, языки, программировани

СИМВОЛИ ТА ПОЗНАЧЕННЯ
    N – множина усіх невід’ємних цілих чисел N+ – множина усіх додатних цілих чисел Z – м

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги