рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Методы нелинейного оценивания

Методы нелинейного оценивания - раздел Математика, Доклады по дисциплине Дополнительные главы математической статистики . Регрессионный анализ. 4 Метод Наименьших Квадратов Функция Потерь Метод Взв...

  • Метод наименьших квадратов
  • Функция потерь
  • Метод взвешенных наименьших квадратов
  • Метод максимума правдоподобия
  • Максимум правдоподобия и логит/пробит модели
  • Алгоритмы минимизации функций
  • Начальные значения, размеры шагов и критерий сходимости
  • Штрафные функции, ограничение параметров
  • Локальные минимумы
  • Квази-ньютоновский метод
  • Симплекс-метод
  • Метод Хука-Дживиса
  • Метод Розенброка
  • Матрица Гессе и стандартные ошибки

 

4.1.Метод наименьших квадратов.

После выбора модели возникает вопрос: каким образом можно оценить эти модели? Методы линейной регрессии или дисперсионного анализа используют оценивание по методу наименьших квадратов. Основной смысл этого метода заключается в минимизации суммы квадратов отклонений наблюдаемых значений зависимой переменной от значений, предсказанных моделью. (Термин наименьшие квадраты впервые был использован в работе Лежандра - Legendre, 1805.)

Определим модель в виде и рассмотрим способ оценки параметра в зависимости от предположений о природе Х и характере распределения .

Пусть распределение вектора не зависит от X и нормально с нулевым вектором средних и ковариационной матрицей , где — неизвест­ная дисперсия компонент , а — единичная матрица порядка n. Сформулированное условие записывается .

Оценка параметров данной модели проводится с по­мощью метода наименьших квадратов (мнк). При этом находится из условия минимизации суммы квадратов отклонений наблюденных значений y от их сглаженных (регрессионных) значений, т.е. величины .

Уравнения метода наименьших квадратов в случае, когда r — ранг X равен p, имеют решение .

Если r<p, то в ряде случаев легко ввести дополнитель­ные ограничения на параметры , где ранг Н равен p - r. Пусть , тогда имеет размер и ранг p и .

 


4.2.Функция потерь.

В стандартной множественной регрессии оценивание коэффициентов регрессии происходит “подбором” коэффициентов, минимизирующих дисперсию остатков (сумму квадратов остатков). Любые отклонения наблюдаемых величин от предсказанных означают некоторые потери в точности предсказаний, например, из-за случайного шума (ошибок). Поэтому можно сказать, что цель метода наименьших квадратов заключается в минимизации функции потерь. В этом случае, функция потерь определяется как сумма квадратов отклонений от предсказанных значений (термин функция потерь был впервые использован в работе Вальда - Wald, 1939). Когда эта функция достигает минимума, вы получаете те же оценки для параметров (свободного члена, коэффициентов регрессии), как, если бы мы использовали Множественную регрессию. Полученные оценки называются оценками по методу наименьших квадратов.

Мнк-оценкн, получающиеся в результате минимизации выбо­рочного критерия адекватности с квадратичной функцией по­терь, неустойчивы к нарушениям предположения о нормаль­ности распределения случайных ошибок. С утяжелением «хво­стов» распределения они быстро теряют свои оптимальные свой­ства. Это связано с тем, что квадратичная функ­ция потерь, используемая в мнк, придает слишком большой вес далеким отклонениям от регрессионной поверхности. Прогресс в области вычислительных методов позволяет перейти к использованию функций потерь , растущих при более медленно, чем . Соответствующие оценки по сравнению с мнк-оценками более устойчивы. Определенное внимание уделяется экспоненциально-взвешенным оценкам (эв-регрессии). Они допускают простую и наглядную интерпретацию, имеют хоро­шие выборочные свойства в случае небольших асимметричных искажений гауссовских распределений ошибок.

Функция потерь: , .

Параметры регрессионной поверхности находят из условия минимизации по вектору :

,

где . Покажем, что для :

1) решение этой задачи единственно;

2) в модели для симметричных распределений случай­ных ошибок оценка состоятельна.

В самом деле, функция , рассматриваемая как функция от , строго выпукла вниз. Следовательно, строго выпукла вниз и сумма , поэтому минимум единствен и достигается в одной точ­ке. Из строгой выпуклости и, следовательно, положи­тельности вытекает, что для любой симметричной отно­сительно нуля случайной величины для любого

. (*)

Из закона больших чисел следует, что в моде­ли для больших значений n для любого фиксированного вектора

. (**)

При симметричном относительно нуля распределении слу­чайных ошибок, как следует из (*), правая часть (**) бу­дет наименьшей при . Следовательно, в силу (**), должно быть при большом n близко к , т. е. оценка состоя­тельная.

Можно также рассмотреть другие функции потерь. Например, при минимизации функции потерь, почему бы вместо суммы квадратов отклонений не рассмотреть сумму модулей отклонений? В самом деле, иногда это бывает полезно для уменьшения влияния выбросов. Влияние, оказываемое крупными остатками на всю сумму, существенно увеличивается при их возведении в квадрат. Однако если вместо суммы квадратов взять сумму модулей выбросов, влияние остатков на результирующую регрессионную кривую существенно уменьшится.

4.3.Метод взвешенных наименьших квадратов.

Третьим по распространенности методом, в дополнение к методу наименьших квадратов и использованию для оценивания суммы модулей отклонений, является метод взвешенных наименьших квадратов. Обычный метод наименьших квадратов предполагает, что разброс остатков одинаковый при всех значениях независимых переменных. Иными словами, предполагается, что дисперсия ошибки при всех измерениях одинакова. Часто, это предположение не является реалистичным. В частности, отклонения от него встречаются в бизнесе, экономике, приложениях в биологии.

Например, вы хотите изучить связь между проектной стоимостью постройки здания и суммой реально потраченных средств. Это может оказаться полезным для получения оценки ожидаемых перерасходов. В этом случае разумно предположить, что абсолютная величина перерасходов (выраженная в долларах) пропорциональна стоимости проекта. Поэтому, для подбора линейной регрессионной модели следует использовать метод взвешенных наименьших квадратов. Функция потерь может быть, например, такой (см. книгу Neter, Wasserman, and Kutner, 1985, стр.168):

Потери = (наблюд.-предск.)2 * (1/x2)

В этом уравнении первая часть функции потерь означает стандартную функцию потерь для метода наименьших квадратов (наблюдаемые минус предсказанные в квадрате; т.е., квадрат остатков), а вторая равна “весу” этой потери в каждом конкретном случае - единица деленная на квадрат независимой переменной (x) для каждого наблюдения. В ситуации реального оценивания, программа просуммирует значения функции потерь по всем наблюдениям (например, конструкторским проектам), как описано выше и подберет параметры, минимизирующие сумму. Возвращаясь к рассмотренному примеру, чем больше проект (x), тем меньше для нас значит одна и та же ошибка в предсказании его стоимости. Этот метод дает более устойчивые оценки для параметров регрессии (более подробно, см. Neter, Wasserman, and Kutner, 1985).


4.4.Метод максимума правдоподобия.

Альтернативой использования метода наименьших квадратов является поиск максимума функции правдоподобия или ее логарифма. Эквивалентным способом является минимизация логарифма функции правдоподобия со знаком минус (термин максимум правдоподобия впервые был использован в работе Фишера - Fisher, 1922a). В общем виде, функцию правдоподобия определяется так:

L = F(Y,Модель) = in= 1 {p [yi, Параметры модели(xi)]}

Теоретически, вы можете вычислить вероятность принятия зависимой переменной определенных значений(обозначенную нами L, от слова Likelihood - правдоподобие), используя соответствующую регрессионную модель. Воспользовавшись тем, что все наблюдения независимы друг от друга, получим, что наша функция правдоподобия равна геометрической сумме (, для всех i = 1 to n) вероятностей конкретных наблюдений (i), заданных соответствующей значению x моделью и параметрами. (Геометрическая сумма означает, что нужно перемножить вероятности по всем возможным случаям внутри скобок.) Часто эти функции представляют в виде натурального логарифма, в этом случае геометрическая сумма становится обычной арифметической суммой (, для всех i = 1 to n).

При выборе конкретной модели, чем больше правдоподобие модели, тем больше вероятность, что предсказанное значение зависимой переменной окажется в выборке. Поэтому, чем больше правдоподобие, тем лучше модель согласуется с выборочными данными. Реальные вычисления для конкретной модели могут оказаться достаточно громоздкими, поскольку вам необходимо “отслеживать” (вычислять) вероятности появления различных значений зависимой переменной y (выбрав модель и соответствующее значение x). Оказывается, что если все предположения для стандартной множественной регрессии выполнены (они описаны в главе Множественная регрессия руководства пользователя), то стандартный метод наименьших квадратов (см. выше) дает те же оценки, что и метод максимума правдоподобия. Если предположение о постоянстве дисперсии ошибки при всех значения независимой переменной нарушено, то оценки по методу максимума правдоподобия можно получить используя метод взвешенных наименьших квадратов.


4.5.Максимум правдоподобия и пробит/логит модели.

Рассмотрим функцию правдоподобия для регрессионных моделей логит и пробит. Функция потерь для этих моделей вычисляется как сумма натуральных логарифмов логит или пробит правдоподобия L1:

log(L1) = in= 1 [yi*log(pi ) + (1-yi )*log(1-pi )]

где:

log(L1) - натуральный логарифм функции правдоподобия для выбранной

(логит или пробит) модели

yi - i-ое наблюдаемое значение

pi - вероятность появления (предсказанная или подогнанная) (между 0 и 1)

Логарифм функции правдоподобия для нулевой модели (L0), т.е. модели, содержащей только свободный член (и не включающей других коэффициентов регрессии) вычисляется как:

log(L0) = n0*(log(n0/n)) + n1*(log(n1/n))

где:

log(L0) - натуральный логарифм функции правдоподобия для нулевой (логит

или пробит) модели

n0 - число наблюдений со значением 0

n1 - число наблюдений со значением 1

n - общее число наблюдений

4.6.Алгоритмы минимизации функций

Теперь, после обсуждения различных регрессионных моделей и функций потерь, используемых для их оценки, единственное, что осталось “в тайне”, это как находить минимумы функций потерь (т.е. наборы параметров, наилучшим образом соответствующие оцениваемой модели), и как вычислять стандартные ошибки оценивания параметров. Нелинейное оценивание использует очень эффективный (квази-ньютоновский) алгоритм, который приближенно вычисляет вторую производную функции потерь и использует ее при поиске минимума (т.е., при оценке параметров по соответствующей функции потерь). Кроме того, Нелинейное оценивание предлагает несколько более общих алгоритмов поиска минимума, использующих различные стратегии поиска (не связанные с вычислением вторых производных). Эти стратегии иногда более эффективны при оценивании функций потерь с локальными минимумами; поэтому, эти методы часто очень полезны для нахождения начальных значений с помощью квази-ньютоновского метода.

Во всех случаях, вы можете вычислить стандартные ошибки оценок параметров. Эти вычисления проводятся с использованием частных производных второго порядка по параметрам, которые приближенно подсчитываются с использованием метода конечных разностей.

Если вас интересует, не как именно происходит минимизация функции потерь, а только то, что такая минимизация в принципе возможна, вы можете пропустить следующие разделы. Однако они могут пригодиться, если получаемая регрессионная модель будет плохо согласовываться с данными. В этом случае, итеративная процедура может не сойтись, выдавая неожиданные (например, очень большие или очень маленькие) оценки для параметров.

В следующих параграфах, мы сначала рассмотрим некоторые вопросы, относящиеся к оптимизации без ограничений, затем дадим краткий обзор методов используемых в этом модуле. Более подробное обсуждение этих методов имеется в книгах Brent (1973), Gill and Murray (1974), Peressini, Sullivan, and Uhl (1988), и Wilde and Beightler (1967). Более широкий обзор алгоритмов можно найти в книгах Dennis and Schnabel (1983), Eason and Fenton (1974), Fletcher (1969), Fletcher and Powell (1963), Fletcher and Reeves (1964), Hooke and Jeeves (1961), Jacoby, Kowalik, and Pizzo (1972), и Nelder and Mead (1964).

– Конец работы –

Эта тема принадлежит разделу:

Доклады по дисциплине Дополнительные главы математической статистики . Регрессионный анализ. 4

Содержание... Регрессионный анализ Теоретическая часть работы...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Методы нелинейного оценивания

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Виды регрессионного анализа
Многошаговая регрессия (ШРА) — последовательность шагов РА, выполняемая в направлении увеличения или уменьшения количества учитываемых коэффициентов линейной модели регрессии.

Линейная регрессия
Регрессионный анализ - раздел математической статистики, объединяющий практические методы исследования регрессионной зависимости между величинами по статистическим данным. Проблема

Исследование линейной зависимости между ЧСС и мощностью выполняемой работы на основе РА
Рассчитать и построить график уравнения линейной регрессии для относительных значений PWC170 (1) и времени челночного бега 3х10 м у 13 исследуемых и сделать вывод о точности расчета урав

Описание объекта
В нашем случае объектом исследования является совокупность наблюдений за посещаемостью WEB сайта Комитета по делам семъи и молодежи Правительства г. Москвы www.telekurs.ru/ismm. Тематика сайта – эт

Факторы формирующие моделируемое явление
Отбор факторов для модели осуществляется в два этапа. На первом идет анализ, по результатам которого исследователь делает вывод о необходимости рассмотрения тех или иных явлений в качестве переменн

Построение уравнения регрессии
  Используя программное обеспечение «ОЛИМП» (которое в свою очередь использует для расчетов указанные выше принципы и формулы чем значительно облегчает нам жизнь), найдем искомое урав

Смысл модели
При увеличении количества вакансий в день, количество посетивших сайт людей будет увеличиваться . Это означает что в настоящий момент сайт не полностью удовлетворяет запросы пользователей, что необ

Общее назначение
Любой закон природы или общественного развития может быть выражен в конечном счете в виде описания характера или струк­туры взаимосвязей (зависимостей), существующих между изу­чаемыми явлениями или

Оценивание линейных и нелинейных моделей
Формально говоря, Нелинейное оценивание является универсальной аппроксимирующей процедурой, оценивающей любой вид зависимости между переменной отклика и набором независимых переменных. В общ

Регрессионные модели с линейной структурой
Полиномиальная регрессия. Распространенной “нелинейной” моделью является модель полиномиальной регрессии. Термин нелинейная заключен в кавычки, поскольку эта модель линейна

Существенно нелинейные регрессионные модели
Для некоторых регрессионных моделей, которые не могут быть сведены к линейным, единственным способом для исследования остается Нелинейное оценивание. В приведенном выше примере для скорости

Регрессионные модели с точками разрыва
Кусочно - линейная регрессия. Нередко вид зависимости между предикторами и переменной отклика различается в разных областях значений независимых переменных. Например,

Начальные значения, размеры шагов и критерии сходимости.
Общим моментом всех методов оценивания является необходимость задания пользователем некоторых начальных значений, размера шагов и критерия сходимости алгоритма. Все методы начинают свою работу с ос

Оценивание пригодности модели
После оценивания регрессионных параметров, существенной стороной анализа является проверка пригодности модели в целом. Например, если вы определили линейную регрессионную модель, а реальная зависим

Распределения Пирсона (хи – квадрат), Стьюдента и Фишера.
В приложениях статистики очень часто используют связанные с нормальным распределения: распределение (хи-квадрат

Распределения Вейбулла - Гнеденко
Экспоненциальные распределения - частный случай так называемых распределений Вейбулла - Гнеденко. Они названы по фамилиям инженера В. Вейбулла, введшего эти распределения в практику анализа результ

Распределение Рэлея
Распределение Рэлея введено Дж. У. Рэлеем (1880) в связи с задачей сложения гармонических колебаний со спиральными фазами. Закон Рэлея применяется для описания неотрицательных величин, в частности,

Факторный анализ как метод редукции данных
Под редукцией понимается переход от многих исходных количественных признаков к пространству факторов, число которых значительно меньше числа исходных количественных признаков. Например, от исходных

Общий обзор методов факторного анализа
В основе каждого метода факторного анализа лежит математическая модель, описывающая соотношения между исходными признаками и обобщенными факторами. Перейдем к краткой характеристике этих моделей дл

Метод главных компонент
В основе модели для выражения исходных признаков через факторы здесь лежит предположение о том, что число факторов равно числу исходных признаков (k=m), а характерные факторы вообще отсутств

Центроидный метод
Этот метод основан на предположении о том, что каждый из исходных признаков aj(j = 1...m) может быть представлен как функция небольшого числа общих факторов F1

Метод экстремальной группировки параметров
Данный метод также основан на обработке матрицы коэффициентов корреляции между исходными признаками. В основе этого метода лежит гипотеза о том, что совокупность исходных признаков может быть разби

Критерии рационального выбора числа факторов
Сколько факторов следует выделять?Напомним, что анализ главных компонент является методом сокращения или редукции данных, т.е. методом сокращения числа переменных. Возникает естест

Проверка качественных характеристик выборки
Будем рассматривать критерии однородности. Любой статистически критерий проверки гипотез пред­ставляет собой средство измерения. Поэтому пользоваться им следует также квалифицированно, как

Критерий Смирнова
Предполагается, что функции распределения и

Критерий однородности Лемана-Розенблатта
Критерий однород­но­сти Лемана-Розенблатта представляет собой критерий типа . Критерий был предложен

Метод минимального расстояния
Равномернаяметрика,или метрика Колмогорова, - одна из наиболее старых и наиболее часто используемых вероятностных метрик. Термин «метрика Колмогорова» в отечественной литературе ис

Проверка количественных характеристик выборки
В §1 были определены характеристики генеральной совокупности, т.е. принадлежность к одной генеральной выборке, а также среднее и первый момент. На данном этапе имеется функция распределени

Кластерный анализ в задачах социально-экономического прогнозирования
Кластерный анализ может быть успешно использован в зада­чах социально-экономического прогнозирования. При анализе и прогнозировании социально-экономических явлений исследователь довольно часто стал

Кластерный анализ как инструмент подготовки эффективных маркетинговых решений
Причины неудач или недостаточно быстрого роста бизнеса в нашей стране часто списываются на несовершенную систему кредитования, пробелы в законодательстве, общую экономическую нестабильность и, нако

Иерархические методы кластерного анализа
Суть иерархической кластеризации состоит в последовательном объединении меньших кластеров в большие или разделении больших кластеров на меньшие.   Иерархические аглом

Меры сходства
Для вычисления расстояния между объектами используются различ­ные меры сходства (меры подобия), называемые также метриками или функциями расстояний. Для придания больших весов более отдале

Методы объединения или связи
Когда каждый объект представляет собой отдельный кластер, рас­стояния между этими объектами определяются выбранной мерой. Возни­кает следующий вопрос — как определить расстояния между кластерами? С

Иерархический кластерный анализ в SPSS
Рассмотрим процедуру иерархического кластерного анализа в паке­те SPSS (SPSS). Процедура иерархического кластерного анализа в SPSS предусматривает группировку как объектов (строк матрицы данных), т

Определение количества кластеров
Существует проблема определения числа кластеров. Иногда можно априорно определить это число. Однако в большинстве случаев число кластеров определяется в процессе агломерации/разделения множества об

Итеративный процесс.
Вычисляются центры кластеров, которыми затем и далее считаются покоординатные средние кластеров. Объекты опять перераспределяются. Процесс вычисления центров и перераспределения объектов п

Проверка качества кластеризации
После получений результатов кластерного анализа методом k-сред­них, следует проверить правильность кластеризации (т.е. оценить, на­сколько кластеры отличаются друг от друга). Для этого рассчитывают

Сравнительный анализ иерархических и неиерархических методов кластеризации.
Перед проведением кластеризации у аналитика может возникнуть вопрос, какой группе методов кластерного анализа отдать предпочтение. Выбирая между иерархическими и неиерархическими методами, необхо­д

Новые алгоритмы и некоторые модификации алгоритмов кластерного анализа
Методы, которые мы рассмотрели, являются «классикой» кластерного анализа. До последнего времени ос­новным критерием, по которому оценивался алгоритм кластеризации, было качество кластеризации: пола

Алгоритм BIRCH
(Balanced Iterative Reducing and Clustering using Hierarchies) Алгоритм предложен Тьян Зангом и его коллегами. Благодаря обобщенным представлениям кластеров, скорость кластеризаци

Алгоритм WaveCluster
WaveCluster представляет собой алгоритм кластеризации на основе волновых преобразований . В начале работы алгоритма данные обоб­щаются путем наложения на пространство данных многомерной ре­шетки. Н

Алгоритмы Clarans, CURE, DBScan
Алгоритм Clarans (Clustering Large Applications based upon RANdomized Search) формулирует задачу кластеризации как случайный поиск в графе. В результате работы этого алгоритма совокупность узлов гр

Однофакторный дисперсионный анализ.
  Однофакторная дисперсионная модель имеет вид:   xij = μ + Fj + εij, (1)   где х

Многофакторный дисперсионный анализ
Следует сразу же отметить, что принципиальной разницы между многофакторным и однофакторным ДА нет. Многофакторный анализ не меняет общую логику ДА, а лишь несколько усложняет ее, поскольку, кроме у

Использование дисперсионного анализа при изучении миграционных процессов.
Миграция - сложное социальное явление, во многом определяющее экономическую и политическую стороны жизни общества. Исследование миграционных процессов связано с выявлением факторов заинтересованнос

Принципы математико-статистического анализа данных медико-биологических исследований.
В зависимости от поставленной задачи, объема и характера материала, вида данных и их связей находится выбор методов математической обработки на этапах как предварительного (для оценки характера рас

Биотестирование почвы
  Многообразные загрязняющие вещества, попадая в агроценоз, могутпретерпевать в нем различные превращения, усиливая при этом свое токсическое действие. По этой причине оказались необх

Дисперсионный анализ в химии
ДА – совокупность методов определения дисперсности, т. е. характеристики размеров частиц в дисперсных системах. ДА включает различные способы определения размеров свободных частиц в жидких и газовы

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги