рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Пространство всех решений однородной системы уравнений. Фундаментальный набор решений однородной системы линейных уравнений.

Пространство всех решений однородной системы уравнений. Фундаментальный набор решений однородной системы линейных уравнений. - раздел Математика, Матрицы. Основные определения – прямоугольная, квадратная, диагональная, треугольная, нулевая и единичная матрицы. Сложение матриц и его свойства Теорема 1. Пусть (1) ...

Теорема 1. Пусть (1) - однородная система линейных уравнений над полем P, U – множество всех решений системы (1), т.е. U=- решение системы (1). Тогда множество U является подпространством векторного пространства V=Pn.

Доказательство проводится непосредственной проверкой с помощью критерия подпространства.

Определение 1. Пусть (1) - однородная неопределенная система линейных уравнений над полем P, U – векторное пространство всех решений системы (1). Базис векторного пространства U называется фундаментальным набором решений однородной системы линейных уравнений (1).

Найдём фундаментальный набор решений системы (1). Пусть x1,…,xr – главные неизвестные, остальные – свободные неизвестные.

Составим систему векторов из U по следующему правилу (*): придадим первой свободной неизвестной значение 1, остальным свободным неизвестным – значение 0, получим вектор ; придадим второй свободной неизвестной значение 1, остальным свободным неизвестным – значение 0, получим вектор , и т.д. Получим систему вида:

(2). Покажем, что (2) – базис векторного пространства U.

1) Покажем, что система (2) линейно независима. Пусть (3) . Покажем, что i=0, i=1,. Подставим в (3) значения из (2). Получим

. Это означает, что система (2) линейно независима.

2) Покажем, что через векторы системы (2) линейно выражается каждый вектор из U. Пусть . Покажем, что вектор линейно выражается через векторы системы (2). Рассмотрим вектор следующего вида:

Так как (2)U , то . Поскольку и (1) - однородная система линейных уравнений, то => => линейно выражается через (2).

Из 1) и 2) следует, что система (2) – базис пространства U и, значит, система (2) удовлетворяет определению фундаментального набора решений системы (1).

Вывод: Для того, чтобы найти фундаментальный набор решений однородной системы линейных уравнений, необходимо решить систему методом Гаусса и записать систему по правилу (*).

– Конец работы –

Эта тема принадлежит разделу:

Матрицы. Основные определения – прямоугольная, квадратная, диагональная, треугольная, нулевая и единичная матрицы. Сложение матриц и его свойства

Определение Матрицей размера m times n над полем Р называется прямоугольная таблица состоящая из n строк и m столбцов следующего вида... где aij P i j... Определение Квадратной матрицей n го порядка над полем P называется матрица размера n times n над полем P...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Пространство всех решений однородной системы уравнений. Фундаментальный набор решений однородной системы линейных уравнений.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Умножение матрицы на скаляр, транспонирование матриц, умножение матриц и их основные свойства.
Определение 1. Пусть A=(aij) – матрица размера m×n над полем P,

Разложение определителя по ряду. Минор и алгебраическое дополнение к элементу определителя. Связь алгебраических дополнений с минорами.
Пусть Δ = =

Системы линейных уравнений (СЛУ). Решение системы линейных уравнений. Элементарные преобразования СЛУ. Элементарные преобразования матрицы.
Определение 1. Система линейных уравнений вида (1) , где

Формула для вычисления обратной матрицы.
Теорема 1. Пусть A=- матрица n-го порядка над полем P. Е

Формулы Крамера.
Теорема 1. Пусть (1) - система n линейных уравнений с n неизвестн

Простейшие свойства векторного пространства
Пусть V — векторное пространство над полем Р. Тогда справедливы следующие свойства. Свойство 1. Для любого

Линейная комбинация системы векторов. Линейно зависимая и линейно независимая системы векторов.
Определение 1. Пусть V – векторное пространство над полем P и ,

Свойства линейно зависимой системы векторов.
Рассмотрим некоторые свойства линейно зависимой системы векторов. Свойство 1. Система векторов, содержащая линейно зависимую подсистему, является линейно зависимой.

Базис системы векторов. Координаты вектора в данном базисе. Разложение вектора по базису — существование и единственность.
Пусть дана система векторов (1) ,

Изоморфизм векторных пространств одинаковой размерности.
Определение. Пусть V1 и V2 — векторные пространства над одним и тем же полем P. Говорят, что V1 изоморфно V2 (обозначается V

Связь между решениями неоднородной системы линейных уравнений с решениями ассоциированной с ней однородной системы линейных уравнений.
Лемма 1. Пусть (1) - неоднородная система линейных уравнений над полем P, (2)

Линейная оболочка системы векторов. Размерность подпространства. Размерность суммы двух подпространств.
Определение 1. Пусть V - векторное пространство над полем Р, —.система в

Матрица перехода от базиса к базису. Преобразование координат.
Пусть Vn - n-мерное векторное пространство над полем P, (1) – базис Vn

Ядро и образ, ранг и дефект линейного отображения.
Определение 1. Пусть V и V1 – векторные пространства над полем Р,

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги