Тема 7. Исследование поведения функции

Пискунов, гл. V, § 1—5, упр. 1—11, 14, 17—20; § 6, упр. 32, 33; § 7, упр. 36, 39, 41—44, 46, 48; § 9, упр. 62—71; § 10, упр. 72—77; § 11 — 12, упр. 81—92, 94—97, 122, 123, 129, 134. Разберите решения задач 18— 20 из данного пособия.

Задача 18. Исследовать функцию и построить ее график.

Решение:

1. Определим область существования функции. Квадратный трехчлен, стоящий под знаком логарифма, можно представить так: . Как видно, под знаком логарифма будет положительное число при любом значении аргумента х. Следовательно, областью существования данной функции служит вся числовая ось.

2. Исследуем функцию на непрерывность. Функция всюду непрерывна и не имеет точек разрыва.

3. Установим четность и нечетность функции. Так как и то функция не является ни четной, ни нечетной.

4. Исследуем функцию на экстремум. Находим первую производную:

Знаменатель для любого значения х. Как видно, при первая производная отрицательна, а при положительна. При х = 3 первая производная меняет свой знак с минуса на плюс. В этой точке функция имеет минимум:

Итак, А(3; 0) — точка минимума (см. рис. 8). Функция убывает на интервале и возрастает на интервале .

5. Определим точки перегиба графика функции и интервалы выпуклости и вогнутости кривой. Для этого находим вторую производную:

Разобьем всю числовую ось на три интервала:Как видно, в первом и третьем интервалах вторая производная отрицательна, а во втором интервале положительна. При х1 = 2 и х2 = 4 вторая производная меняет свой знак. Эти значения аргумента являются абсциссами точек перегиба. Определим ординаты точек:

Следовательно, и — точки перегиба графика функции. График является выпуклым в интервалах и , и вогнутым в интервале (2, 4).

6. Определим уравнения асимптот графика функции. Для определения уравнения невертикальной асимптоты воспользуемся формулами:

Имеем

Чтобы найти искомый предел, дважды применяем правило Лопиталя:

Итак, кривая не имеет асимптот. График исследуемой функции показан на рис. 8.

Задача 19. Исследовать функцию и построить ее график.

Решение: 1. Функция терпит разрыв при х=2. При всех других значениях аргумента она непрерывна.

2. Функция не является ни четной, ни нечетной, так как и

3.Исследуем функцию на экстремум, используя вто­рой достаточный признак экстремума: если в стационарной точке х0 вторая производная отлична от нуля, то в этой точке функция имеет максимум при и минимум при Находим первую производную:

(1)

или

Как видно, первая производная равна нулю при х = 1 и х = 3 и не существует при х = 2. Так как при х = 2 заданная функция не существует, то эта точка не подлежит исследованию. Дифференцируя (1), находим вторую производную у":


Сократив на и выполнив преобразования в числителе, получим

(2)

 

Так как то при х1 = 1 функция имеет максимум. Так как то при х2 = 3 функция имеет минимум.

Вычислим значения функции в точках экстремума: y(1) = 3; у (3) = 7. Следовательно, А (1; 3) — точка максимума, В(3; 7) — точка минимума.

4. Из (2) видно, что вторая производная ни при каком значении аргумента не обращается в ноль. Следовательно, график исследуемой функции не имеет точек перегиба.

5. Определим асимптоты графика функции, х = 2 есть уравнение вертикальной асимптоты. Используя соответствующие формулы, выясним вопрос о наличии наклонной асимптоты:

Следовательно, – уравнение наклонной асимптоты. График исследуемой функции приведен на рис. 9.

Задача 20. Расстояние от центральной усадьбы совхоза до районного центра, расположенного у асфальтированной прямолинейной дороги, составляет 26 км (отрезок АВ на рис. 10), а кратчайшее расстояние от центральной усадьбы до этой дороги — 10 км (отрезок АС). Скорость велосипедиста на асфальтированной дороге равна 20 км/ч, а за ее пределами — 12 км/ч. Найти минимальное время, в течение которого велосипедист преодолеет путь от центральной усадьбы до районного центра.

Решение: Пусть CD = х, тогда Путь велосипедиста состоит из двух участков AD и BD. На первом участке его скорость равна 12 км/ч, на втором — 20 км/ч. Время, затраченное велосипедистом на весь путь,

(1)

(Из прямоугольного треугольника АВС следует, что ВС = 24; следовательно, BD = 24 —х.)

Исследуем функцию (1) на экстремум. Найдем первую производную, приравняем ее нулю и решим полученное уравнение. Имеем

(2)


откуда

Определим знак производной (2) при и при

При х = 7,5 производная изменяет знак с минуса на плюс; значит, при этом значении аргумента функция имеет минимум. Подставив в (1) х = 7,5, получим

Таким образом, минимальное время нахождения в пути велосипедиста составляет 1 ч 52 мин.

Заметим, что при x = 0, т.е. если выбрать кратчайший путь до асфальтированной дороги, а затем двигаться по ней, то время в пути составит у(0) = 2 ч 02 мин. Если же выбрать прямой путь по неасфальтированной дороге (т.е. при х = 24), то время в пути составит 2 ч 10 мин.