рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Теорема об И с переменным верхним пределом

Теорема об И с переменным верхним пределом - раздел Математика, Частные производные 2-го порядка Одним Из Важных Понятий Для Непрерывных И Интегрируемых На Сегменте [A,b] Фун...

Одним из важных понятий для непрерывных и интегрируемых на сегменте [a,b] функций является понятие интеграла с переменным верхним пределом.Пусть функция f(x) интегрируема на любом сегменте [α,β]Є(а;в)и пусть c - некоторая фиксированная точка, принадлежащая интервалу (a,b), тогда, каково бы ни было число хЄ( a,b), функция f(x) интегрируема на [c,x], и на интервале (a,b) определена функция F(x)= , которая называется интегралом с переменным верхним пределом.

Теорема. Любая непрерывная на интервале (a,b) функция f(x) имеет на этом интервале первообразную. Одной из первообразных является функция F(x)= ,где с - любая фиксированная точка интервала (a,b).Достаточно доказать, что для ( х берем таким, чтобы (х +∆x)Є(a,b)). Рассмотрим разность F(x+∆x)-F(x)= = + - = =f(z)∆x,где z-некоторое число, заключенное между х и х +∆x.Так как f(x) непрерывна в точке х, то при∆x⟶0 f(z)⟶f(x) ,то

Следовательно, существует F`(x)= и F`(x)=f(x).Теорема доказана.

 

13. инт-лы от функций, содержащих квадратный трёхчлен…

I r wsp:rsidR="00000000"><w:pgSz w:w="12240" w:h="15840"/><w:pgMar w:top="1134" w:right="850" w:bottom="1134" w:left="1701" w:header="720" w:footer="720" w:gutter="0"/><w:cols w:space="720"/></w:sectPr></w:body></w:wordDocument>"> II

Интегралы первого типа берутся с помощью замены переменной, предварительно выделив в многочлене Р2(х) полный квадрат

Для нахождения интеграла второго типа необходимо выполнить следующий алгоритм:1.Находим производную кВ-го трехчлена, стоящего в знаменателе, т.е.

2.Формируем эту произв-ю в числителе подынтегральной функции

3.Разбиваем этот интеграл на два, вида: второй интеграл типа I , а первый берётся путем поднесения под знак дифф-ла:

Пр.: ( ,

A=

B= = =

A+B=…

 

 

– Конец работы –

Эта тема принадлежит разделу:

Частные производные 2-го порядка

Рассмотрим НИ II Они возникают если пытаться на конечном отрезке интегрирования a b интегрировать разрывную подынтегральную функцию... Пример dx... Интеграл вычислен с ошибкой Подынтегральная функция y в точке имеет разрыв рода принадлежит Т е...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Теорема об И с переменным верхним пределом

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Частные производные 2-го порядка.
Пусть в некоторой окрестности точки (x0 ,y0) задана функция f(x,y). Фиксируя переменную y(y=y0), получим функцию одной переменной x: f(x,y

Теоремы о дифференцировании сложной функции 2ух переменных.
Теорема1. Если Ƶ=f(x,y) и x=x(t), y=y(t), то производная Если в функцию Ƶ подставить вместо х и у соответствующие функции, зависящие от переменной t, то в результате по

Экстремум функции 2ух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных.
Ɛ M0     Точка М0 называется точкой локального минимума для функции Ƶ = f(x, y), если для любой точки

Понятие дифференциального уравнения I порядка, его общего и частного решения
ДУ – это связь между независимой переменной х, зависимой переменной у и её производными различных порядков. F(x, y, , …, s w:space="720"/></w:sectPr></w:body></w:wordDoc

Дифференциального уравнения II порядка.
y’’ + py’ + qy =f(x) (1) если f(x)=0, то уравнение называется однородным. В случае если у однородного уравнения p(x) и q(x)- const. То уравнение примет вид y’’ + py’ + qy

Нахождения общего решения ОЛДУ II с постоянными коэффициентами.
Для нахождения ф-ий у1 и у2 Эйлером был предложен метод, так называемого характеристического уравнения, с помощью которого ищется у1 и у2,

Дифференциального уравнения II порядка.
y’’ + py’ + qy = f(x) (1) yoн=yoo+yчн ,где yoo – общее решение соотв. однородного ДУ yчн – какое-то частное решен

Метод вариации произвольной постоянной.
y’’ + py’ + qy = f(x) (1) Для решения (1) Ла Гранже и был предложен универсальный метод. суть: он предложил искать решение неоднородного ур-я в том же виде что и решение соотв. однородного

Сходящиеся и расходящиеся ряды. Исследование сходимости рядов вида
Ряды бывают: сходящиеся и расходящиеся. Если в ряде a1+a2+…+an+… (1) взять сумму первых n-слагаемых, то получим n-ую частичную сумму ряда (Sn

Признаки сравнения для знакоположительных рядов.
Теорема 1(признак сравнения): Если даны 2 ряда: 1) , ; 2) , n= 1, 2,… для которых , то 1ый ряд наз-сяможарируемым, а 2ой – можарантным. Если 2ой ряд сход-ся, то сход-ся и

Знакопеременные и знакочередующиеся ряды. Понятие абсолютной и условной сходимости. Знакочередующиеся ряды Лейбницевского типа
Знакопеременный ряд – ряд, содержащий как положительные так и отрицательные члены. Знакопеременный ряд называется знакочередующимся, если его члены попеременно принимают значен

Линейные дифференциальные уравнения 1 порядка и уравнения Бернулли.
Уравнение вида y'+ρ(x)y=f(x), где ρ(x) и f(x) непрерывные функции, называется линейным дифференциальным уравнением первого порядка относительно у. Если f(x)=0, то уравнение называется лин

Свойства определенного интеграла.
Значение опред. и-ла – это число(любое). 1. Значение опред. и-ла не зависит от того, какой буквой обозначена переменная интегрирования, т. е. . 2. 0. В граф.иллюстрации этого случ

Понятие определенного интеграла, его геометрический и экономический смысл.
Пусть на конечном промежутке ab задана непрер. ф-ция y=f(x). 1)Разобьем отр. ab произв. образом на n-частей . Длину отрезка обозначим i. i= , i=1t wx:val="Cambria Math"/><w:i/>&l

Формула Ньютона-Лейбница
Связь м/ду понятиями неопред. и опред.Иустанов.в теореме Ньютона-Лейбница.Если у=f(х)непрерывна на конечном отрезке[а;в] иF(х)-некоторая первообразная для f(х),то (1): =F(x)│а

Замена перемен. в опред.И.Интегрир.по частям
Пусть ф-ция х=φ(t)определена,непрерывна,дифиринцирована,монотонна на отр.[α;β]. φ(α)=а,φ(β)=в. f(х)непрерывна на отр.[а;в],тогда = ∙φ،

Полное приращения фдп. Дифференциал фнп. Формула приближенных вычислений. Геометр смысл диф-ла.
Δх и Δу-независим перем-ые. Δz- зависим. Δх=х-хо, Δу=у-уо. Δz= -полное приращ Проблема при диф-нии фдп-не однозначн

Геометрическая интерпретация общего решения и решения задачи Коши.
  На практике часто приходится решать так называемую задачу Коши – совокупность ДУ и начальных условий(НУ). Причём задачи Коши можно поставить для ДУ разных порядков. От поря

Интегралы от функций, содержащич квадратный трехчлен
Qm(x)   … Pn(x) ______ Rm-n(x) Lk(x), k<n

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги