рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Экстремум функции 2ух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных.

Экстремум функции 2ух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных. - раздел Математика, Частные производные 2-го порядка Ɛ M0     ...

Ɛ M0    
Точка М0 называется точкой локального минимума для функции Ƶ = f(x, y), если для любой точки М є Ɛ окрестности точки М0 справедливо неравенство:

 

В окрестности множество точек, лежащие внутри

Круга с центром в точке М0 и радиусом Ɛ. (Ɛ→0)

Аналогично определяется и локальный максимум: точка М0 – точка локального максимума для функции Ƶ = f(x, y), если для любой точки М из Ɛ окрестности точке М справедливо неравенство:

 

На практике для нахождения экстремумов необходимы 2 условия в виде теорем:

Теорема 1. (необходимое условие существования экстремума в точке М0)

Если М0 – точка локального экстремума, то в точке М0 1ые производные функции 2ух переменных обращаются в 0.

 

Несмотря на то, что это условие является необходимым, оно используется для выбора среди точек из области определения ряда точек, в которых может быть экстремум. Конкретно для выбора экстремальных точек среди уже отобранных с помощью Теоремы 1 , применяется Теорема 2(критерий Сильвестра).

Теорема 2. Функция Ƶ = f(x, y) имеет в М0 экстремум, если определитель 2го порядка, состоящий из всевозможных 2ых производных функции 2ух переменных и вычисленный в этой точке М0 >0. >0

⃒M0=(x0, y0)

Характер экстремума определяется по 1му элементу, а именно, если , то в точке М0 достигается минимум, если , то в точке М0- максимум.

Если при вычислении Δ он окажется < 0 , то в точке М0 экстремума нет, если Δ = 0, то вопрос о существовании экстремума в точке M0 остается открытым – нужны дополнительные исследования.

Ввиду того, что = ( при выполнении условия теоремы) критерий можно переписать в следующем виде: Δ = 2⃒М0

 


8.Свойства неопределённого интеграла

1. (òf(х)dх)'= f(х)

(òf(х)dх)'=(F(x)+C)'=F'(x)+C'= f(х)

2.Интеграл от дифференциала ф-ции f(х)равен самой ф-ции f(х) òdf(х)= f(х)

3.Свойство линейности. Интеграл от линейной комбинации двух ф-ций равен

ò( α1f1(х)± α2f2(х))dх= α1 òf1(х)dх± α2òf2(х)dх

Св-во 1 неопред. интеграла будем использовать на практике для проверки правильности нахождения неопред. интеграла.

В рез-те дифференцирования любой ф-ции, заданной в виде линейной комбинации элементарной ф-ции всегда получается также комбинация элементарной ф-ции. При нахождении неопред. интеграла от комбинации элементарных ф-ций не всегда получается комбинация элементарн. ф-ций, т.е. не все комбинации элементарн. ф-ций интегрируются, т.е. интегралы не от всяких ф-ций берутся.

Известные примеры «не берущихся» интегралов

- интеграл Пуасона

- интеграл Кринеля

25. Понятие несобственных интегралов I рода. Пример интеграл Дирихле I рода.

Если в определении определенного интеграла нарушено либо условие непрерывности функции, либо условие конечности отрезка интегрирования, то имеем дело с НИ.

1) Если отрезок интегрирования [a,b]- бесконечен, то НИ-1

2) Если подынтегральная функция y=f(x) разрывна на отрезке [a,b], то НИ-2

Рассмотрим НИ-1. Их может быть 3 варианта: 1) 2) 3)

Дадим определение НИ-1первого варианта: =

В случае если при вычислении НИ-1 получается константа, то говорят, что НИ-1 сходятся к этому числу. В случае если в ответе получается ∞ или предел не существует, то говорят, что НИ-1 расходится.

Аналогично определения и других НИ-1: ;

Пример: = = =

Вывод: НИ сходится к π.


 

– Конец работы –

Эта тема принадлежит разделу:

Частные производные 2-го порядка

Рассмотрим НИ II Они возникают если пытаться на конечном отрезке интегрирования a b интегрировать разрывную подынтегральную функцию... Пример dx... Интеграл вычислен с ошибкой Подынтегральная функция y в точке имеет разрыв рода принадлежит Т е...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Экстремум функции 2ух переменных. Необходимое и достаточное условия экстремума функции нескольких переменных.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Частные производные 2-го порядка.
Пусть в некоторой окрестности точки (x0 ,y0) задана функция f(x,y). Фиксируя переменную y(y=y0), получим функцию одной переменной x: f(x,y

Теоремы о дифференцировании сложной функции 2ух переменных.
Теорема1. Если Ƶ=f(x,y) и x=x(t), y=y(t), то производная Если в функцию Ƶ подставить вместо х и у соответствующие функции, зависящие от переменной t, то в результате по

Понятие дифференциального уравнения I порядка, его общего и частного решения
ДУ – это связь между независимой переменной х, зависимой переменной у и её производными различных порядков. F(x, y, , …, s w:space="720"/></w:sectPr></w:body></w:wordDoc

Дифференциального уравнения II порядка.
y’’ + py’ + qy =f(x) (1) если f(x)=0, то уравнение называется однородным. В случае если у однородного уравнения p(x) и q(x)- const. То уравнение примет вид y’’ + py’ + qy

Нахождения общего решения ОЛДУ II с постоянными коэффициентами.
Для нахождения ф-ий у1 и у2 Эйлером был предложен метод, так называемого характеристического уравнения, с помощью которого ищется у1 и у2,

Дифференциального уравнения II порядка.
y’’ + py’ + qy = f(x) (1) yoн=yoo+yчн ,где yoo – общее решение соотв. однородного ДУ yчн – какое-то частное решен

Метод вариации произвольной постоянной.
y’’ + py’ + qy = f(x) (1) Для решения (1) Ла Гранже и был предложен универсальный метод. суть: он предложил искать решение неоднородного ур-я в том же виде что и решение соотв. однородного

Сходящиеся и расходящиеся ряды. Исследование сходимости рядов вида
Ряды бывают: сходящиеся и расходящиеся. Если в ряде a1+a2+…+an+… (1) взять сумму первых n-слагаемых, то получим n-ую частичную сумму ряда (Sn

Признаки сравнения для знакоположительных рядов.
Теорема 1(признак сравнения): Если даны 2 ряда: 1) , ; 2) , n= 1, 2,… для которых , то 1ый ряд наз-сяможарируемым, а 2ой – можарантным. Если 2ой ряд сход-ся, то сход-ся и

Знакопеременные и знакочередующиеся ряды. Понятие абсолютной и условной сходимости. Знакочередующиеся ряды Лейбницевского типа
Знакопеременный ряд – ряд, содержащий как положительные так и отрицательные члены. Знакопеременный ряд называется знакочередующимся, если его члены попеременно принимают значен

Линейные дифференциальные уравнения 1 порядка и уравнения Бернулли.
Уравнение вида y'+ρ(x)y=f(x), где ρ(x) и f(x) непрерывные функции, называется линейным дифференциальным уравнением первого порядка относительно у. Если f(x)=0, то уравнение называется лин

Свойства определенного интеграла.
Значение опред. и-ла – это число(любое). 1. Значение опред. и-ла не зависит от того, какой буквой обозначена переменная интегрирования, т. е. . 2. 0. В граф.иллюстрации этого случ

Понятие определенного интеграла, его геометрический и экономический смысл.
Пусть на конечном промежутке ab задана непрер. ф-ция y=f(x). 1)Разобьем отр. ab произв. образом на n-частей . Длину отрезка обозначим i. i= , i=1t wx:val="Cambria Math"/><w:i/>&l

Формула Ньютона-Лейбница
Связь м/ду понятиями неопред. и опред.Иустанов.в теореме Ньютона-Лейбница.Если у=f(х)непрерывна на конечном отрезке[а;в] иF(х)-некоторая первообразная для f(х),то (1): =F(x)│а

Замена перемен. в опред.И.Интегрир.по частям
Пусть ф-ция х=φ(t)определена,непрерывна,дифиринцирована,монотонна на отр.[α;β]. φ(α)=а,φ(β)=в. f(х)непрерывна на отр.[а;в],тогда = ∙φ،

Полное приращения фдп. Дифференциал фнп. Формула приближенных вычислений. Геометр смысл диф-ла.
Δх и Δу-независим перем-ые. Δz- зависим. Δх=х-хо, Δу=у-уо. Δz= -полное приращ Проблема при диф-нии фдп-не однозначн

Теорема об И с переменным верхним пределом
Одним из важных понятий для непрерывных и интегрируемых на сегменте [a,b] функций является понятие интеграла с переменным верхним пределом.Пусть функция f(x) интегрируема на любом сегменте [α,

Геометрическая интерпретация общего решения и решения задачи Коши.
  На практике часто приходится решать так называемую задачу Коши – совокупность ДУ и начальных условий(НУ). Причём задачи Коши можно поставить для ДУ разных порядков. От поря

Интегралы от функций, содержащич квадратный трехчлен
Qm(x)   … Pn(x) ______ Rm-n(x) Lk(x), k<n

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги