рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Обоснование алгоритма.

Обоснование алгоритма. - раздел Математика, КУРС ЛЕКЦИЙ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ Пусть Мы Находимся В Некоторой Вершине ...

Пусть мы находимся в некоторой вершине . В исходном графе степень вершины четное число, поэтому после зачеркивания ребер, по которым мы приходили и уходили из вершины , ее степень — нечетна. Следовательно, существует, по крайней мере, одно незачеркнутое ребро, инцидентное вершине . Если это ребро — единственное, инцидентное вершине , то оно, в силу замечания в алгоритма, не может быть «перешейком», и по нему можно покинуть вершину .

Пусть ребер, инцидентных вершине нечетное число, большее единицы. Докажем, что среди них хотя бы одно ребро не является перешейком. Допустим противное: все ребра, инцидентные вершине перешейки. Удалим одно из этих ребер, такое, чтобы вершина и оказались в разных компонентах связности. Такое ребро существует, так как в противном случае вершины и были бы связаны более чем одной простой цепью. Это означало бы, что существует простой цикл, содержащий вершины и . Но ребра, входящие в простой цикл, не могут быть перешейками.

Рассмотрим компоненту связности , содержащую вершину (и не содержащую вершину ). В графе степени всех вершин, в том числе и вершины четные числа. Следовательно, в графе существует эйлеров цикл. Ребра, входящие в цикл, не могут быть перешейками.

Итак, наше допущение ведет к противоречию. Более того, мы убедились, что среди ребер, инцидентных вершине в графе, полученном из графа удалением пройденных ребер, лишь одно может быть перешейком.

Таким образом, доказано, что невозможность выполнить предписания алгоритма может возникнуть только в вершине , если попасть в нее, по крайней мере, во второй раз. В отличие от других вершин степень вершины при -м попадании в нее — четна. Если эта степень равна нулю, алгоритм перестает работать.

Докажем, что в этом случае эйлеров цикл уже построен. В самом деле, в силу правила любое ребро может войти в цикл не более одного раза. В силу правил 4°, 5° — пройдены все ребра. Действительно, непройденные ребра определяют в графе компоненты связности. Если эти компоненты можно связать с вершиной цепью из более чем одного зачеркнутого ребра, то среди этих ребер наверняка одно — перешеек; если одним ребром, то была возможность выбора ребра, не ведущего в вершину .

 

– Конец работы –

Эта тема принадлежит разделу:

КУРС ЛЕКЦИЙ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ

ВОСТОЧНОУКРАИНСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ... имени ВЛАДИМИРА ДАЛЯ... Барабаш В В...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Обоснование алгоритма.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ
(2 семестр) (для студентов специальности «Прикладная математика», «Компьютерные системы и сети»)   У Т В Е Р Ж Д Е Н О на

Основные комбинаторные формулы.
  Существует два общих правила комбинаторики: правило сложения и правило умножения. Правило умножения: Пусть составляются всевозможные строки

Размещения.
  1) Размещения без повторений. Определение 2: Пусть имеется различных предметов.

Перестановки.
  1) Перестановки без повторений. Определение 3: Пусть - конечное множество из

Сочетания.
  1) Сочетания без повторений. Определение 3: Сочетания из элементов по

Свойства сочетаний. Бином Ньютона.
  Одной из наиболее распространённых комбинаторных формул является формула числа сочетаний. Для упрощения подсчётов и для доказательства некоторых утверждений удобно использовать след

Определение 1: Коэффициенты бинома Ньютона называются биномиальными коэффициентами.
Числовые значения биномиальных коэффициентов вычисляются по формуле числа сочетаний: . Готовые значения этих коэффициентов располагаются в с

Рекуррентные соотношения.
  При решении многих комбинаторных задач применяют метод сведения данной задачи к задаче касающегося меньшего числа элементов. Например, можно вывести формулу для числа перестановок:

Производящие функции.
  Метод рекуррентных соотношений позволяет решать многие комбинаторные задачи. Но в ряде случаев рекуррентные соотношения трудно составить, а иногда ещё трудней решить. Часто эти труд

Алгоритм решения.
1°. Присвоить вершине метку 0. 2°. Если

Обоснование алгоритма.
Докажем, что после конечного числа применений правила 3° для каждой дуги графа станет справедливым неравенство

Алгоритм построения Эйлерова цикла.
Обратимся к задаче об эйлеровом цикле, уже рассмотренной нами в предыдущем параграфе. Пусть — связный граф, степени всех вершин которого — ч

Потоки на транспортных сетях.
1. Основная задача теории транспортных сетей. Определение 1: Транспортная сеть есть совокупность

Алгоритм Форда - Фалкерсона для нахождения потока наибольшей величины.
1°. Перенумеровать произвольным образом вершины сети , отличные от входа

Обоснование алгоритма.
Прежде всего, заметим, что реализация алгоритма состоит из конечного числа шагов. В самом деле, п. 3° может применяться лишь конечное число раз, так как на каждом шаге величина пот

Теорема 1: Для заданной транспортной сети величина наибольшего потока равна наименьшей пропускной способности разрезов, т. е. .
Рис. 11 В качестве примера

Цикломатическое число графа. Деревья.
  Во многих прикладных задачах существенны свойства графов, связанные с существованием в графе замкнутых цепей (циклов). К рассмотрению этих вопросов мы и приступим. Все графы данного

Эйлерова характеристика. Плоские графы.
  Определение 1: Пусть задан набор отрезков гладких кривых на плоскости, причем выполнны следующие услов

Теорема 2: Графы и , где множество состоит из элементов вида , не допускают плоской реализации.
Доказательство: Отметим, что в графе нет циклов длины 3, так как любое ребро ведет из группы вершин

Оценка хроматического числа плоского графа.
1. Теорема о пяти красках. Теорема утверждает, что любой граф, обладающий плоской реализацией, может быть правильно раскрашен пятью красками. Вспоминая задачу, сформулированную в нача

Графы правильных многогранников.
  Теория графов позволяет решать задачи из традиционных разделов математики, например, исследовать некоторые свойства правильных многогранников. При этом, используя элементы теории гр

Автомат Мура.
  Определение:Конечным автоматом называется набор из 5 объектов , где:

Морфизмы.
  Пусть - конечный автомат. Тогда по любой входной строке длины

Эквивалентные состояния автоматов.
  В этом параграфе мы решим следующую задачу: по данному описанию автомата построить новый автомат

Теорема 1: Если , то либо , либо для подходящей строки имеем .
Доказательство: Утверждение означает, что для подходя

Машина Тьюринга.
  Понятие конечного автомата возникло из близкого понятия, введенного в 1936 г. логиком Тьюрингом. Тьюринг рассмотрел гипотетическую машину, имеющую конечное множество

Не полностью описанные автоматы.
  До сих пор мы рассматривали полностью описанные автоматы. Практически функции и

Примитивно рекурсивные функции.
  Операции над числовыми функции назовем операторами. В этом параграфе мы определим ряд операторов, обладающих тем свойством, что, применяя их к функциям, вычи

Частично рекурсивные функции.
  Оператор минимизации. Рассмотрим некоторую n - местную частичную функцию

Машины Тьюринга.
  Важный и широкий класс алгоритмов был описан Тьюрингом и Постом в 1936 - 1937 г. Алгоритмы этого класса осуществляются особыми машинами, называемыми сейчас машинами Тьюри

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги