рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Рекуррентные соотношения.

Рекуррентные соотношения. - раздел Математика, КУРС ЛЕКЦИЙ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ   При Решении Многих Комбинаторных Задач Применяют Метод Сведен...

 

При решении многих комбинаторных задач применяют метод сведения данной задачи к задаче касающегося меньшего числа элементов. Например, можно вывести формулу для числа перестановок:

.

Отсюда видно, что всегда может быть сведён к факториалу от меньшего числа.

Хорошей иллюстрацией к построению рекуррентных соотношений является задача Фибоначчи. В своей книге в 1202 г. итальянский математик Фибоначчи привел следующую задачу. Пара кроликов приносит приплод раз в месяц двух крольчат (самку и самца), причём новорождённые крольчата через два месяца после рождения сами приносят приплод. Сколько кроликов появится через год, если в начале была одна пара кроликов.

Из условия задачи следует, что через месяц будет две пары кроликов, через два месяца приплод даст только первая пара кроликов, появившихся два месяца назад, поэтому всего будет 3 пары кроликов. Ещё через месяц будет уже 5 пар. И так далее.

Обозначим через количество пар кроликов по истечении месяцев с начала года. Тогда через месяц количество пар кроликов можно найти по формуле:

.

Эта зависимость называется рекуррентным соотношением. Слово «рекурсия» означает возврат назад (в нашем случае – возврат к предыдущим результатам).

По условию, и , тогда по соотношению имеем: , , и т.д., .

Определение 1: Числа называются числами Фибоначчи. Это – известная в математике последовательность чисел:

1, 1, 2, 3, 5, 8, 13, 21, ...

В этой последовательности каждое последующее число является суммой двух предыдущих чисел. И в рекуррентном соотношении также последующий член находится как сумма двух предыдущих членов.

Установим связь между числами Фибоначчи и комбинаторной задачей. Пусть требуется найти число - последовательностей, состоящих из нулей и единиц, в которых никакие две единицы не стоят подряд.

Возьмем любую такую последовательность и сопоставим ей пару кроликов по следующему правилу: единицам соответствуют месяцы появления на свет одной из пар «предков» данной пары (включая и исходную), а нулями – все остальные месяцы. Например, последовательность устанавливает такую «генеалогию» – сама пара появилась в конце 11-го месяца, ее родители в конце 7-го месяца, «дед» – в конце 5-го месяца, и «прадед» в конце 2-го месяца. Первоначальная пара шифруется последовательностью . Ни в одной последовательности две единицы не могут стоять подряд – только что появившаяся пара не может принести приплод через месяц. Очевидно, различным последовательностям отвечают различные пары и обратно.

Таким образом, число последовательностей с указанными свойствами, равно .

Теорема 1: Число находится как сумма биномиальных коэффициентов:. Если – нечетно, то . Если – четно, то . Иначе: – целая часть числа .

Доказательство: В самом деле, - число всех последовательностей из 0 и 1, в которых никакие две единицы не стоят рядом. Число таких последовательностей, содержащих ровно единиц и нулей, равно , при этом , тогда изменяется от 0 до . Применяя правило суммы, получаем данную сумму.

Это равенство можно доказать иначе. Обозначим:

, .

Из равенства , следует, что . Кроме этого, ясно, что и . Так как обе последовательности и удовлетворяют рекуррентному соотношению , то , и .

Определение 2: Рекуррентное соотношение имеет порядок , если оно позволяет вычислять через предыдущих членов последовательности: .

Например, – рекуррентное соотношение второго порядка, а рекуррентное соотношение 3-го порядка. Соотношение Фибоначчи является соотношением второго порядка.

Определение 3:Решением рекуррентного соотношения является последовательность, удовлетворяющая этому соотношению.

Если задано рекуррентное соотношение ‑ го порядка, то ему удовлетворяют бесконечно много последовательностей, т.к. первые элементов можно задать произвольно. Но если первые элементов заданы, то остальные члены определяются однозначно.

Например, соотношению Фибоначчи кроме рассмотренной выше последовательности 1, 1, 2, 3, 5, 8, 13, 21, ..., могут удовлетворять также и другие последовательности. К примеру, последовательность 2, 2, 4, 8, 12,... строится по тому же принципу. Но если задать начальные члены (их в последовательности Фибоначчи - 2), то решение определяется однозначно. Начальных членов берут столько, каков порядок соотношения.

По известным рекуррентным соотношениям и начальным членам можно выписывать члены последовательности один за другим и таким путем мы можем получить любой её член. Но во многих случаях, нам не нужны все предыдущие члены, а необходим один определенный член. В этом случае удобнее иметь формулу ‑ го члена последовательности.

Мы будем говорить, что некоторая последовательность является решением данного рекуррентного соотношения, если при подстановке этой последовательности соотношение тождественно выполняется.

Например, последовательность является одним из решений соотношения: . Это легко проверить обычной подстановкой.

Определение 4: Решение рекуррентного соотношения ‑ го порядка называется общим, если оно зависит от произвольных постоянных , меняя которые, можно получить любое решение данного соотношения.

Например, для соотношения общим решение будет .

В самом деле, легко проверяется, что оно будет решением нашего соотношения. Покажем, что любое решение можно получить в таком виде. Пусть и – произвольны.

Тогда найдутся такие и , что

Очевидно, для любых , система уравнений имеет единственное решение.

Определение 5: Рекуррентное соотношение называется линейным, если оно записывается в виде:

,

где - числовые коэффициенты.

Для решения произвольных рекуррентных соотношений общих правил, вообще говоря, нет. Однако для решения линейных рекуррентных соотношений есть общие правила решения.

Рассмотрим сначала соотношение 2-го порядка .

Решение этого соотношения основано на следующих утверждениях.

Теорема 2: Если и - являются решением данного рекуррентного соотношения 2-го порядка, то для любых чисел и последовательность также является решением этого соотношения.

Теорема 3: Если число является корнем квадратного уравнения , то последовательность является решением рекуррентного соотношения .

Из теорем 2, 3 вытекает следующее правило решения линейных рекуррентных соотношений 2-го порядка.

Пусть дано рекуррентное соотношение .

1) Составим квадратное уравнение , которое называется характеристическим для данного соотношения. Найдём все корни этого уравнения (даже кратные и комплексные).

2) Составим общее решение рекуррентного соотношения. Его структура зависит от вида корней (одинаковые они или различные).

а) Если это соотношение имеет два различных корня и , то общее решение соотношения имеет вид .

Действительно, из теорем 2, 3 следует, что - решение и система уравнений

- имеет единое решение, т.к. при условии .

Например, для чисел Фибоначчи, имеем . Характеристическое уравнение имеет вид: . Решая последнее уравнение, получим корни:

,

поэтому общее решение соотношения Фибоначчи имеет вид:

.

Для начальных условий , и , т.е. для последовательности получаем для констант и систему:

и ,

поэтому

.

Это выражение для всех натуральных принимает целые значения.

б) Рассмотрим теперь случай, когда корни характеристического уравнения совпадают, т.е. , тогда , , т.е. характеристическое уравнение имеет вид .

В этом случае и рекуррентное соотношение имеет вид:

.

Покажем, что наряду с , выражение - также является решением нашего соотношения. Действительно:

.

И общее решение в этом случае будет равно:

.

Нетрудно видеть, что и здесь можно подобрать так, что будут удовлетворены любые начальные условия.

Замечание: Линейные рекуррентные соотношения с постоянными коэффициентами порядка больше двух, решаются аналогично.

Пусть соотношение имеет вид . Составляем характеристическое уравнение: .

Если все корни характеристического уравнения различны, то общее решение имеет вид: .

Если же, например, , то этому корню соответствуют решения:

данного рекуррентного соотношения. В общем решении этому корню соответствует часть .

Например, решая рекуррентное соотношение:

,

составляем характеристическое уравнение вида: .

Его корни , . Поэтому общее решение есть:

.

 

 

– Конец работы –

Эта тема принадлежит разделу:

КУРС ЛЕКЦИЙ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ

ВОСТОЧНОУКРАИНСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ... имени ВЛАДИМИРА ДАЛЯ... Барабаш В В...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Рекуррентные соотношения.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ
(2 семестр) (для студентов специальности «Прикладная математика», «Компьютерные системы и сети»)   У Т В Е Р Ж Д Е Н О на

Основные комбинаторные формулы.
  Существует два общих правила комбинаторики: правило сложения и правило умножения. Правило умножения: Пусть составляются всевозможные строки

Размещения.
  1) Размещения без повторений. Определение 2: Пусть имеется различных предметов.

Перестановки.
  1) Перестановки без повторений. Определение 3: Пусть - конечное множество из

Сочетания.
  1) Сочетания без повторений. Определение 3: Сочетания из элементов по

Свойства сочетаний. Бином Ньютона.
  Одной из наиболее распространённых комбинаторных формул является формула числа сочетаний. Для упрощения подсчётов и для доказательства некоторых утверждений удобно использовать след

Определение 1: Коэффициенты бинома Ньютона называются биномиальными коэффициентами.
Числовые значения биномиальных коэффициентов вычисляются по формуле числа сочетаний: . Готовые значения этих коэффициентов располагаются в с

Производящие функции.
  Метод рекуррентных соотношений позволяет решать многие комбинаторные задачи. Но в ряде случаев рекуррентные соотношения трудно составить, а иногда ещё трудней решить. Часто эти труд

Алгоритм решения.
1°. Присвоить вершине метку 0. 2°. Если

Обоснование алгоритма.
Докажем, что после конечного числа применений правила 3° для каждой дуги графа станет справедливым неравенство

Алгоритм построения Эйлерова цикла.
Обратимся к задаче об эйлеровом цикле, уже рассмотренной нами в предыдущем параграфе. Пусть — связный граф, степени всех вершин которого — ч

Обоснование алгоритма.
Пусть мы находимся в некоторой вершине . В исходном графе степень вершины

Потоки на транспортных сетях.
1. Основная задача теории транспортных сетей. Определение 1: Транспортная сеть есть совокупность

Алгоритм Форда - Фалкерсона для нахождения потока наибольшей величины.
1°. Перенумеровать произвольным образом вершины сети , отличные от входа

Обоснование алгоритма.
Прежде всего, заметим, что реализация алгоритма состоит из конечного числа шагов. В самом деле, п. 3° может применяться лишь конечное число раз, так как на каждом шаге величина пот

Теорема 1: Для заданной транспортной сети величина наибольшего потока равна наименьшей пропускной способности разрезов, т. е. .
Рис. 11 В качестве примера

Цикломатическое число графа. Деревья.
  Во многих прикладных задачах существенны свойства графов, связанные с существованием в графе замкнутых цепей (циклов). К рассмотрению этих вопросов мы и приступим. Все графы данного

Эйлерова характеристика. Плоские графы.
  Определение 1: Пусть задан набор отрезков гладких кривых на плоскости, причем выполнны следующие услов

Теорема 2: Графы и , где множество состоит из элементов вида , не допускают плоской реализации.
Доказательство: Отметим, что в графе нет циклов длины 3, так как любое ребро ведет из группы вершин

Оценка хроматического числа плоского графа.
1. Теорема о пяти красках. Теорема утверждает, что любой граф, обладающий плоской реализацией, может быть правильно раскрашен пятью красками. Вспоминая задачу, сформулированную в нача

Графы правильных многогранников.
  Теория графов позволяет решать задачи из традиционных разделов математики, например, исследовать некоторые свойства правильных многогранников. При этом, используя элементы теории гр

Автомат Мура.
  Определение:Конечным автоматом называется набор из 5 объектов , где:

Морфизмы.
  Пусть - конечный автомат. Тогда по любой входной строке длины

Эквивалентные состояния автоматов.
  В этом параграфе мы решим следующую задачу: по данному описанию автомата построить новый автомат

Теорема 1: Если , то либо , либо для подходящей строки имеем .
Доказательство: Утверждение означает, что для подходя

Машина Тьюринга.
  Понятие конечного автомата возникло из близкого понятия, введенного в 1936 г. логиком Тьюрингом. Тьюринг рассмотрел гипотетическую машину, имеющую конечное множество

Не полностью описанные автоматы.
  До сих пор мы рассматривали полностью описанные автоматы. Практически функции и

Примитивно рекурсивные функции.
  Операции над числовыми функции назовем операторами. В этом параграфе мы определим ряд операторов, обладающих тем свойством, что, применяя их к функциям, вычи

Частично рекурсивные функции.
  Оператор минимизации. Рассмотрим некоторую n - местную частичную функцию

Машины Тьюринга.
  Важный и широкий класс алгоритмов был описан Тьюрингом и Постом в 1936 - 1937 г. Алгоритмы этого класса осуществляются особыми машинами, называемыми сейчас машинами Тьюри

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги