Аппроксимация функции по Фурье

Пусть функция задана в интервале . В этом случае (при наличии у нее соответствующих свойств интегрируемости) можно построить ряд Фурье этой функции, а именно объект

, (15.1)

где:

. (15.2)

Известно, что для непрерывной функции этот ряд сходится в каждой точке интервала и притом - к значению в этой точке функции . Если суммирование в ряду Фурье прервать на каком-то слагаемом, то возникнет приближенное равенство:

,

которое тем точнее, чем больше число слагаемых в сумме. В этом и состоит аппроксимация функции по Фурье.

Практически организация расчетов при аппроксимации происходит так: задается та степень точности e, с которой надо приблизить число с помощью частичных сумм ряда (16.1.1); затем вычисляют, постепенно наращивая количество слагаемых, частичные суммы ряда (16.1.1) и делают это до тех пор, пока два раза подряд не получится при суммировании одно и то же с точностьюe число; его и принимают за нужное приближение. Естественно, что при вычислении частичных сумм ряда (16.1.1) требуются коэффициенты , которые вычисляются с помощью численного интегрирования через определяющие равенства (15.2).

Описанная ситуация обобщается на случай функции , заданной не на интервале , а на произвольном интервале . В этом случае (для непрерывной функции ) имеет место равенство

, (15.3)

 

внутри интервала , где:

(15.4)

Принято выделять случаи четной и нечетной функции, так как при этом выражения (15.3) и (15.4) существенно упрощаются, а именно:

если на интервале функция четная, то для всех имеют место равенства и:

; (15.5)

 

если на интервале функция нечетная, то для всех имеют место равенства и:

(15.6)

 

Это обстоятельство подсказывает выход из положения, при котором функция задана не на интервале , а только на интервале : функцию можно продолжить на весь интервал четным или нечетным образом, а затем произвести разложение Фурье, соответственно по косинусам (случай (15.5)) или по синусам (случай (15.6)).