рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Предикаты и кванторы

Предикаты и кванторы - раздел Математика, КОНСПЕКТ ЛЕКЦИЙ ПО МАТЕМАТИЧЕСКОЙ ЛОГИКЕ Каждая Наука Имеет Дело Со Специфическими Объектами, Совокупность Которых Обр...

Каждая наука имеет дело со специфическими объектами, совокупность которых образует объектную (или предметную) областьданной науки. Об этих объектах можно формулировать высказывания, которые могут быть истинными или ложными. При этом удобно использовать не одиночные высказывания, а “высказывания” с переменными, вместо которых можно подставлять те или иные конкретные объекты.

Примеры: 1.Высказывание “Волга впадает в Каспийское море” является истинным и говорит об одной конкретной реке Волге. Можно рассмотреть следующее “высказывание” с переменной x : “Река x впадает в Каспийское море”, которое позволяет вместо переменной x подставлять любую реку и получать осмысленные высказывания. Например, при x = Иртыш получим ложное высказывание.

2.3 – простое число” – истинное высказывание об одном числе 3, а “y – простое число” – это “высказывание с переменной” y, вместо которой можно подставлять любые целые числа и получать осмысленные высказывания. Например, при y = 17 получим истинное высказывание, а при y = 6, –7 – ложные.

Точно так же можно образовывать “высказывания ” и от нескольких переменных. Например, “x > y” – “высказывание” от двух переменных x и y, вместо которых можно подставлять любые действительные числа, “x2 + y2 = z2 ” – “высказывание” от трёх переменных x, y и z, принимающих числовые значения.

Пусть А – произвольное непустое множество, x1 , … , xnпеременные. Повествовательное предложение, в котором участвуют переменные x1 , … , xn , обращающееся в высказывание при подстановке вместо x1 , … , xn произвольных элементов a1 , … , an Î A, называется предикатом от n переменныхx1 , … , xn на А. Следует отметить, что для простоты будут, как правило, рассматриваться предикаты, всюду определённые на A.

Замечание: Само “повествовательное предложение, в котором участвуют переменные x1 , … , xn высказыванием не является. Например, предложение “Река x впадает в Каспийское море” бессмысленно, т.к. x – это переменная, а не название реки. Но оно становится высказыванием после подстановки вместо x произвольного названия реки.

Можно дать другое определение предиката, не ссылающееся на неопределяемое понятие высказывания: предикат P(x1 , … , xn) от n переменныхx1 , … , xn на А – это произвольное отображение (т.е. всюду определённая функция) P : An ® B = {0, 1}, где значения 1 и 0 интерпретируются как обычно – истина и ложь.

Примеры: 1.“x M 3” (x делится нацело на 3) – предикат от одного переменного x на Z множестве всех целых чисел – представляет функцию P : Z ® B, где P(x) = 1 тогда и только тогда, когда x делится на 3.

2. “x > ” – предикат от двух переменных x, y на A = R \ {0}, но не на R (?!). Его можно рассматривать как функцию P : A´A ® B двух переменных, где P(x, y) = 0 в том и только том случае, если x £ .

Если P(x1 , … , xn) – предикат от n переменных на А, то множество D(P) = (декартово произведение n экземпляров множества А, обозначаемое также An ) называют областью определения предикатаP(x1 , … , xn). Множество D1(P) = {(a1 ; … ; an) Î D(P) | P(a1 , … , an) = 1} называют областью истинности этого предиката, а множество D0(P) = D(P) \ D1(P) областью ложности предиката P(x1 , … , xn ). Ясно, что

D0(P) = {(a1 ; … ; an) Î D(P) | P(a1 , … , an) = 0}.

Сведения о простейших понятиях теории множеств даны в § 1 приложения.

Примеры: 1.Для предиката P(x) = “x M 3” в соответствии с определениями

D(P) = Z, D1(P) = {x Î Z | x M 3} = {… , –6, –3, 0 , 3, 6, …},

D0(P) = Z \ D1(P) = {… –8, –7, –5, –4, –2, –1, 1, 2, 4, 5, 7, 8, …}.

2.Для предиката P(x) = “x2 > x” имеем D(P) = R, D1(P)={x Î R | x2 > x} = = (–∞; 0 ) È (1; +∞), D0(P) = {x Î R | x2 £ x} = [0; 1].

3. Для предиката P(x, y) = “x > получим D(P) = (R \ {0})´(R \ {0}) = = (R \ {0})2. Вычислим области истинности и ложности предиката:

D1(P) = { (x; y) Î D(P) | x > }, D0(P) = { (x; y) Î D(P) | x £ }.

Для этого решим неравенство x > :

x > > 0 Û y×(x×y – x + 1) > 0.

Если y > 0, то x×y – x + 1 > 0. Это выполнено при x = 0, при y > = 1 – (для x > 0) и при 0 < y < 1 – (для x < 0).

Для y < 0 получаем условие x×y – x + 1 < 0. Это верно при y < 1 – (для x > 0).

Полученные множества D1(P) и D0(P) изображены на рисунке: множество D1(P) заштриховано, а D0(P) – нет.

 

– Конец работы –

Эта тема принадлежит разделу:

КОНСПЕКТ ЛЕКЦИЙ ПО МАТЕМАТИЧЕСКОЙ ЛОГИКЕ

Государственное образовательное учреждение... Тобольская государственная социально педагогическая академия... им Д И Менделеева...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Предикаты и кванторы

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Тобольск – 2010
УДК 510.6Печатается по решению редакционно-издательского ББК 22.12 я 73 совета Тобольской государственной социально- В 15пе

С О Д Е Р Ж А Н И Е
ПРЕДИСЛОВИЕ . . . . . . . . . . . . . .       Глава I.

П Р Е Д И С Л О В И Е
Хотя настоящее учебно-методическое пособие предназначено, в первую очередь, для студентов физико-математических специальностей пединститутов, оно может быть использовано и при чтении курса математи

Понятие высказывания
  Математика, как это ни кажется странным, – наука устная: математики, рассуждая, оперируют высказываниями, именно общение является питательной средой математического творчества, в ко

Язык исчисления высказываний
В любом естественном языке есть возможность строить из простых высказываний более сложные. Примеры: 1. “Сейчас температура воздуха на улице от –25 до –30 гра

Истинностные значения формул
  Истинность или ложность элементарных высказываний оставляется на совести той области знания, к которой они относятся. Логика позволяет по заданным истинностным значениям элементарны

И равносильные формулы
  Примеры предыдущего параграфа показывают, что таблицы истинности формул могут быть разнообразны. Формулы, принимающие при любых наборах значений пропозициональных переменных одно и

Нормальные формы
x1 … xn A(x1 , … , xn ) … … …

Булевы функции
  После того как каждой формуле A(x1 , … , xn) при любом наборе x1 = e1 , … … , xn = en (ei

Логическое следование
  Понятие логического следования является одним из важнейших в математической логике и имеет непосредственное отношение к жизни. Нам часто приходится обосновывать те или иные утвержде

Некоторые применения алгебры высказываний
I. Анализ логических рассуждений. Рассмотрим несколько примеров, которые используют понятие логического следования. Примеры: 1. Правильно ли следующее лог

Равносильные и тождественно истинные предикаты
  Два предиката P(x1 , … , xn ) и Q(x1 , … , xn ), определённые на множестве А (т.е. предикаты с условиями An

Теорема (об основных равносильностях с кванторами).
(0) " x Î A P(x, y) º " z Î A P(z, y), $ x Î A P(x, y) º $ z Î A P(z, y), где P(x,

Язык исчисления предикатов
  С помощью предикатов можно формулировать содержательные утверждения в различных областях знания. Поэтому важно дать средства построения осмысленных выражений с предикатами и приписы

Интерпретации формул исчисления предикатов
Уже в исчислении высказываний возникала ситуация, когда было невозможно однозначно говорить об истинности или ложности формулы: при одних значениях пропозициональных переменных эта формула может пр

Приведённая и предварённая нормальные формы
  По аналогии с исчислением высказываний, найдём некоторую нормальную форму, к которой можно равносильными преобразованиями привести любую формулу исчисления предикатов. С по

О структуре современных математических теорий
  Очень кратко, не претендуя на полноту, опишем лишь основные черты, присущие всем математическим теориям на современном этапе развития. Фундаментом любой математической теор

Некоторые методы доказательства теорем
  Под теоремой обычно понимается математическое утверждение, которое можно доказать. Доказательством теоремыТ называется конечная последовательность теорем Т1

Формальные и неформальные аксиоматические теории
Нами изучены две математические теории, относящиеся к логике: алгебра высказываний и алгебра предикатов. В обоих случаях делалось следующее: · были объявлены первоначальные (неопределяемые

Непротиворечивость аксиоматических теорий
Система аксиом формальной теории, как и сама теория, называются непротиворечивой, если не существует такой формулы Ф этой формальной теории, что Ф и

Полнота аксиоматических теорий
Любая содержательная формальная теория строится для обоснования рассуждений в некоторых содержательных теориях. Возникает вопрос: насколько полно описывает формальная теория соответствующую содержа

Разрешимость аксиоматических теорий
Проблема разрешимости теории может быть сформулирована несколькими способами: (Проблема доказуемости):Существует ли алгоритм, позволяющий за конечное число шагов эф

Независимость системы аксиом теории
Создавая аксиоматическую теорию, естественно стремиться не выписывать лишних аксиом – тех, которые выводимы из остальных. Система аксиом формальной теории называется независимой, если ни одн

Формальное исчисление высказываний
Подробно рассмотрим формальную теорию исчисления высказываний (ИВ). Нашей целью будет обоснование адекватности этой теории, описанной формально в § 1 главы III, неформальной алгебре высказыв

B, A (A Ù B) дедукция
11 · Г, B, A (A Ù B) расширение посылок 12 · Г, А, В

A Ù B) ® ((A Ú C) Ù (B Ú C))) дедукция
13 · (С ® (A Ú C)) (Д2) 14 · С (A Ú C) де

A Ú C) (В ® ((A Ù B) Ú C)) дедукция
10 · (A Ú C) (С ® ((A Ù B) Ú C)) (почему ?!) 11 ·

Дедукция
4 · (A Ù B) B (почему ?!) 5 ·

A, , (A ® B) Bдедукция
3 · A, , (A ® B)

A ® B) (Ú ) силлогизм
19 · (Ú )

A ® B)) дедукция
8 · (B ® (A ® B)) (И1) 9 · ((® (A ® B)) ® ((B ® (A ® B)) ® ((

Правило опровержения
Упражнение:Докажите формально остальные основные равносильности. 6. Доказуемость и тождественная истинность формул. Теперь уже можно доказать основной рез

Азы наивной теории множеств
В фундаменте современных математических теорий лежат понятия множества, элемента множества, отношения принадлежности элемента множеству. Интуитивный смысл этих понятий ясен: под множеством п

Аксиоматика Цермело-Френкеля теории множеств
  В § 1 приложения были даны основные понятия теории множеств. Однако развиваемая на этом основании Г. Кантором наивная теория множеств столкнулась в конце XIX в. с трудностями. Вот –

Кущи или адские дебри ?
Попытаемся неформально проанализировать общематематические достижения в задаче обоснования теории множеств. Сразу нужно отметить, что замкнутого изложения основ формальная теория множеств не даёт.

Л И Т Е Р А Т У Р А
А) ОСНОВНАЯ ЛИТЕРАТУРА: 1.Глухов М.М., Козлитин О.А., Шапошников В.А., Шишков А.Б. Задачи и упражнения по математической логике, дискретным функциям и тео

СПИСОК ОСНОВНЫХ ОБОЗНАЧЕНИЙ
N – множество всех натуральных чисел, Q – множество всех рациональных чисел, R – множество в

ПРЕДМЕТНЫЙ УКАЗАТЕЛЬ
А аксиома объёмности................................................. 150 аксиома (неупорядоченной) пары..............................

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги