рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Побудова графіків функцій за допомогою геометричних перетворень

Побудова графіків функцій за допомогою геометричних перетворень - раздел Математика, Елементарні формули алгебри. Спрощення алгебраїчних виразів. У Табл. 4.4 Показано, Як За Допомогою Геометричних Перетворень (Паралельний П...

У табл. 4.4 показано, як за допомогою геометричних перетворень (паралельний перенос, симетрія, стиск і розтяг) можна отримати графіки відповідних функцій з графіка функції

Таблиця 4.4

Функція Перетворення Приклад
  паралельне перенесення графіка функції на a одиниць вправо (якщо « ») або вліво (якщо «+»)    
    паралельне перенесення графіка функції на b одиниць вниз (якщо « ») або вгору (якщо «+»)      

Закінчення табл. 4.4

Функція Перетворення Приклад
  стиск або розтяг графіка функції уздовж осі (розтяг – якщо , стиск – якщо )  
  стиск або розтяг графіка функції уздовж осі (стиск – якщо , розтяг – якщо )  
  симетрія графіка функції відносно осі  
  симетрія графіка функції відносно осі  

Приклад 4.9.Побудувати графік дробово-лінійної функції .

Розв’язання: Виділимо цілу частину: . Отже, функція набуває вигляду . Графік (рис. 4.24) цієї функції можна побудувати з графіка за допомогою ланцюжка елементарних перетворень (див. табл. 4.2), а саме:

.

 

Зауваження. Під час останніх двох перетворень треба перенести асимптоти і центр симетрії

Приклад 4.10. Побудувати графік функції

Розв’язання. Графік цієї функції (рис. 4.25) можна отримати з графіка функції

(див. рис. 4.13) в результаті розтягнення останнього в два рази вздовж осей і

 

Рис. 4.24

 

Рис. 4.25

Приклад 4.11. Побудувати графік функції .

Розв’язання. Перепишемо функцію у вигляді У системі координат (пунктирні лінії) побудуємо графік функції , а потім вісь перенесемо на одиницю вниз (вісь ), а вісь – на ліворуч (рис. 4.26).

Приклад 4.12. Побудувати графік функції .

Розв’язання.Отримаємо цей графік з графіка перенесенням уздовж осі на одиницю вліво (рис. 4.27).

 

 

Рис. 4.26

 

Рис. 4.27

Приклад 4.13. Побудувати графік функції

Розв’язання.Графік цієї функції отримаємо з графіка функції перенесенням на одиницю вправо вздовж осі . Пряма – вертикальна асимптота (рис. 4.28).

 

Завдання для самостійної роботи

4.1. Знайти область визначення функції:

а) ; b) ; c) ;

d) ; e) ; f) ; g) .

 

4.2. Дослідити функцію на парність або непарність:

а) b) c) d)

e) f) .

 

Рис. 4.28

 

4.3. Побудувати графіки функцій:

а) ; b) ; c) ; d) .

4.4. Побудувати графіки функцій:

а) b) c) d) e) f) g) h) i) j) к) l) м) n)

4.5. Побудувати графіки функцій:

а) b) c) d) e) ; f) g) h) i)

j) k) l) m)

4.6. Побудувати графіки функцій:

а) ; b) ; c) ;

d) ; e) .

 

– Конец работы –

Эта тема принадлежит разделу:

Елементарні формули алгебри. Спрощення алгебраїчних виразів.

Розділ Алгебраїчні перетворення... Многочлени від однієї змінної Ділення многочленів з остачею Теорема Безу...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Побудова графіків функцій за допомогою геометричних перетворень

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Теорема Безу
Загальний вигляд многочлена: , де – ім'я; – степінь; – аргумент; – коефіцієнт; – старший коефіцієнт (якщо – многочлен зведений); – старший член; – вільний член.

Корені многочлена. Теорема Вієта
Теорема (про раціональні корені многочлена). Якщо раціональне число ( , – цілі взаємно прості числа) – корінь многочлена з цілими коефіцієнтами, то – дільник вільного члена, – діль

Раціональних дробів на прості дроби
Означення 1. Дріб вигляду , де – многочлени, називається раціональним; якщо , то раціональний дріб є правильним. Означення 2. Раціональні дроби де називаю

Розв’язання.
, якщо ( це ОДЗ перетворень). Приклад 1.12.Спростити вираз   Розв’язання. ОДЗ:   Звільнимося від і

Тригонометричні функції числового аргументу
Наведемо означення тригонометричних функцій числового аргументу. Синусом числа ( ) називається ордината точки C, яка утворюється в результаті повороту радіус-вектора = {0,

Основні формули тригонометрії. Формули зведення. Перетворення тригонометричних виразів
  У процесі перетворення тригонометричних виразів широко застосовуються такі формули. 1. Формули додавання:   . 2. Формули кратних аргументів

Розв’язання.
  У перетвореннях тригонометричних виразів застосовувалися формули подвійного аргументу для і . Слід звернути увагу на те, що наведені дії можливі лише тоді, коли тобто , або .

Властивості логарифмів. Логарифмічні перетворення
  При перетворенні логарифмічних виразів треба враховувати властивості показникової та логарифмічної функцій:   1) 2) 3) 4)

Означення функції та її властивості
Означення функції. Правило (закон) відповідності між множинами і , за яким для кожного елемента з множини можна знайти один і тільки один елемент з множини , називається функцією.

Графіки алгебраїчних функцій
  Лінійна функція. Функція вигляду називається лінійною функцією. Графіком функції є пряма лінія, яку можна побудувати за двома точками. Наприклад, якщо

Графіки показникової та логарифмічної функцій
Означення.Функція вигляду де – будь-яке додатне число, що не дорівнює , а – будь-яке дійсне число, називаєтьсяпоказниковою. Графіки показникової функції для зн

Рівняння та нерівності. Основні означення
Рівнянням з однією змінною називається рівність, що містить цю змінну, яку називають невідомою. Розв’язком ( або коренем) рівняння називається таке значен

Метод інтервалів. Раціональні нерівності
  Розглянемо функцію     Якщо всі нулі чисельника та знаменника відмітити на числовій прямій, то вони розіб’ють її на проміжків. Усередині кожного

Розв’язання.
1. Нулі заданої функції – . Вони розбивають числовий інтервал на 4 проміжки (рис. 5.3). Оскільки нерівність не строга, то точки і включаємо до розв’язку.     Ри

Рівняння та нерівності, що містять під знаком абсолютної величини
Нагадаємо означення модуля або абсолютної величини числа: модулем називається само число , якщо і , якщо :   Наприклад, якщо , то . А у випадку значення модуля таке: .

Розв’язання.
Приклад 5.22 . Розв’язати рівняння Розв’язання. Винесемо за дужки Отримаємо:   Приклад 5.23. Розв’язати рівняння

Тригонометричні рівняння
  Не існує єдиного методу побудови розв’язку тригонометричних рівнянь. Можна лише зазначити, що перетворення тригонометричних виразів має бути спрямовано на те, щоб рівняння набувало

Означення комплексного числа
У шкільному курсі математики розглядаються такі числові множини: натуральні числа , цілі числа , раціональні числа і дійсні числа . При цьому , тобто кожна подальша множина включає попередню і біль

Алгебраїчні дії з комплексними числами
Нехай і . Застосовуючи властивості арифметичних дій, маємо: 1) додавання (віднімання): ; 2) множення: ; 3) ділення: . Остання дія була виконан

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги