рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Розв’язання.

Розв’язання. - раздел Математика, Елементарні формули алгебри. Спрощення алгебраїчних виразів. Приклад 5.22 . Розв’Язати Рівняння Розв’Яза...

Приклад 5.22 . Розв’язати рівняння

Розв’язання. Винесемо за дужки Отримаємо:

 

Приклад 5.23. Розв’язати рівняння

Розв’язання. Позначимо . Маємо . Корені квадратного

рівняння: і . Оскільки то нас влаштовує тільки корінь . Тоді

Якщо невідома змінна міститься під знаком логарифма або в його основі, то таке рівняння називається логарифмічним. При розв’язуванні логарифмічних рівнянь обов’язково потрібно враховувати властивості логарифмічної функції : , , .

Приклад 5.24. Розв’язати рівняння

Розв’язання. Для цього рівняння ОДЗ таке:

Розв’яжемо нерівність :Парабола не має точок перетину з віссю . Отже, для будь-яких . Тоді Þ , . За означенням логарифма маємо

Þ Þ Þ , .

Приклад 5.25 . Розв’язати рівняння .

Розв’язання. Визначимо ОДЗ цього рівняння: Þ .

До лівої частини рівняння застосуємо властивість , тобто ліва частина дорівнює логарифму дробу В правій частині рівняння . Тоді початкове рівняння набуде вигляду За означенням логарифма . Оскільки то .

Приклад 5.26. Розв’язати рівняння .

Розв’язання. Для цього рівняння ОДЗ таке: . До лівої частини рівняння застосуємо властивість . За означенням десяткового логарифма , , , . Врахуємо, що , тоді не є коренем цього рівняння.

Завдання для самостійної роботи

5.14. Розв’язати рівняння:

а) b) c) d)

e) f) g)

h) i) j)

k) l)

m) n) o) p)

 

5.5. Показникові та логарифмічні нерівності

 

При розв’язуванні нерівностей, що містять показникову або логарифмічну функцію, треба пам’ятати властивості цих функцій, а саме те, що при є монотонно зростаючими, а при – монотонно спадними. Таким чином, маємо нерівності

; .

Аналогічно:

.

При розв’язуванні логарифмічних нерівностей також треба пам’ятати, що функція визначена тільки при .

Приклад 5.27 . Розв язати нерівність

Розв’язання. Оскільки функція – монотонно зростаюча і , то нерівність, задана за умовою, еквівалентна таким нерівностям:

,

(застосовано метод інтервалів для розв’язування нерівностей).

Приклад 5.28. Розв’язати нерівність

Розв’язання. Покладемо . Тоді . Враховуючи, що

, одержимо .

Приклад 5.29 . Розв’язати нерівність

Розв’язання. ОДЗ цієї нерівності така:

Оскільки – монотонно спадна функція, то задана нерівність еквівалентна нерівності . Остання нерівність з урахуванням того, що – монотонно зростаюча функція, рівносильна нерівності З урахуванням ОДЗ одержимо відповідь: (рис. 5.8).

 

Рис. 5.8

Приклад 5.30. Розв’язати нерівність

Розв’язання. Зведемо праву частину до основи : , одержимо . Функція - монотонно спадна. Тому, якщо , а і , то . Отже, з нерівності випливає , або . Розв’яжемо квадратну нерівність:

 

 

Таким чином, Þ (рис. 5.9).

Приклад 5.31. Розв’язати нерівність

Розв’язання. Врахуємо, що Тоді а функція монотонно зростає. Це означає, що для будь-яких і (при ), що належать області допустимих значень функції, . Тоді, якщо то Розв’яжемо квадратну нерівність: Тоді

Þ (рис. 5.10).

 

 

 

Рис. 5.9 Рис. 5.10

Завдання для самостійної роботи

5.16. Розв’язати нерівності:

а) b) c) d) e)

f) g) h)

i) j) k) l) m) n)

o) p) q)

– Конец работы –

Эта тема принадлежит разделу:

Елементарні формули алгебри. Спрощення алгебраїчних виразів.

Розділ Алгебраїчні перетворення... Многочлени від однієї змінної Ділення многочленів з остачею Теорема Безу...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Розв’язання.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Теорема Безу
Загальний вигляд многочлена: , де – ім'я; – степінь; – аргумент; – коефіцієнт; – старший коефіцієнт (якщо – многочлен зведений); – старший член; – вільний член.

Корені многочлена. Теорема Вієта
Теорема (про раціональні корені многочлена). Якщо раціональне число ( , – цілі взаємно прості числа) – корінь многочлена з цілими коефіцієнтами, то – дільник вільного члена, – діль

Раціональних дробів на прості дроби
Означення 1. Дріб вигляду , де – многочлени, називається раціональним; якщо , то раціональний дріб є правильним. Означення 2. Раціональні дроби де називаю

Розв’язання.
, якщо ( це ОДЗ перетворень). Приклад 1.12.Спростити вираз   Розв’язання. ОДЗ:   Звільнимося від і

Тригонометричні функції числового аргументу
Наведемо означення тригонометричних функцій числового аргументу. Синусом числа ( ) називається ордината точки C, яка утворюється в результаті повороту радіус-вектора = {0,

Основні формули тригонометрії. Формули зведення. Перетворення тригонометричних виразів
  У процесі перетворення тригонометричних виразів широко застосовуються такі формули. 1. Формули додавання:   . 2. Формули кратних аргументів

Розв’язання.
  У перетвореннях тригонометричних виразів застосовувалися формули подвійного аргументу для і . Слід звернути увагу на те, що наведені дії можливі лише тоді, коли тобто , або .

Властивості логарифмів. Логарифмічні перетворення
  При перетворенні логарифмічних виразів треба враховувати властивості показникової та логарифмічної функцій:   1) 2) 3) 4)

Означення функції та її властивості
Означення функції. Правило (закон) відповідності між множинами і , за яким для кожного елемента з множини можна знайти один і тільки один елемент з множини , називається функцією.

Графіки алгебраїчних функцій
  Лінійна функція. Функція вигляду називається лінійною функцією. Графіком функції є пряма лінія, яку можна побудувати за двома точками. Наприклад, якщо

Графіки показникової та логарифмічної функцій
Означення.Функція вигляду де – будь-яке додатне число, що не дорівнює , а – будь-яке дійсне число, називаєтьсяпоказниковою. Графіки показникової функції для зн

Побудова графіків функцій за допомогою геометричних перетворень
У табл. 4.4 показано, як за допомогою геометричних перетворень (паралельний перенос, симетрія, стиск і розтяг) можна отримати графіки відповідних функцій з графіка функції Таблиця 4.4

Рівняння та нерівності. Основні означення
Рівнянням з однією змінною називається рівність, що містить цю змінну, яку називають невідомою. Розв’язком ( або коренем) рівняння називається таке значен

Метод інтервалів. Раціональні нерівності
  Розглянемо функцію     Якщо всі нулі чисельника та знаменника відмітити на числовій прямій, то вони розіб’ють її на проміжків. Усередині кожного

Розв’язання.
1. Нулі заданої функції – . Вони розбивають числовий інтервал на 4 проміжки (рис. 5.3). Оскільки нерівність не строга, то точки і включаємо до розв’язку.     Ри

Рівняння та нерівності, що містять під знаком абсолютної величини
Нагадаємо означення модуля або абсолютної величини числа: модулем називається само число , якщо і , якщо :   Наприклад, якщо , то . А у випадку значення модуля таке: .

Тригонометричні рівняння
  Не існує єдиного методу побудови розв’язку тригонометричних рівнянь. Можна лише зазначити, що перетворення тригонометричних виразів має бути спрямовано на те, щоб рівняння набувало

Означення комплексного числа
У шкільному курсі математики розглядаються такі числові множини: натуральні числа , цілі числа , раціональні числа і дійсні числа . При цьому , тобто кожна подальша множина включає попередню і біль

Алгебраїчні дії з комплексними числами
Нехай і . Застосовуючи властивості арифметичних дій, маємо: 1) додавання (віднімання): ; 2) множення: ; 3) ділення: . Остання дія була виконан

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги