рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Тригонометричні рівняння

Тригонометричні рівняння - раздел Математика, Елементарні формули алгебри. Спрощення алгебраїчних виразів.   Не Існує Єдиного Методу Побудови Розв’Язку Тригонометричних Р...

 

Не існує єдиного методу побудови розв’язку тригонометричних рівнянь. Можна лише зазначити, що перетворення тригонометричних виразів має бути спрямовано на те, щоб рівняння набувало стандартного вигляду або «розпадалося» на кілька стандартних (простіших) рівнянь. Наведемо лише кілька методів побудови розв’язків тригонометричних рівнянь, тим паче що використання їх буде корисним у подальшому вивченні курсу вищої математики:

1. Введення додаткового аргументу за формулою

.

Оскільки то величини і можуть бути косинусом і синусом деякого кута . Якщо, наприклад, позначити , а , то отримаємо вищенаведену формулу.

2. Зведення рівняння до алгебраїчного після заміни тригонометричної функції.

3. Розкладання на множники.

Слід також запам’ятати розв’язки так званих найпростіших тригонометричних рівнянь:

, , , ;

, , , ;

, , , ;

, , , .

Окрім загальних формул розв’язків найпростіших тригонометричних рівнянь корисно знати формули для так званих «окремих випадків» розв’язків найпростіших тригонометричних рівнянь:

, , ; , , ;

, , ; , , ;

, , ; , , ;

, , .

Приклад 5.32. Розв’язати рівняння .

Розв’язання. Задано рівняння . Його розв’язок: , або .

Приклад 5.33. Розв’язати рівняння .

Розв’язання.Якщо поділити обидві частини на 2, то можна записати рівняння у вигляді , або , ; звідси , , .

Приклад 5.34. Розв’язати рівняння .

Розв’язання. Розкладемо ліву частину рівняння на множники, використовуючи формулу суми кубів:

 

 

 

Це рівняння рівносильне сукупності рівнянь

 

Перше з них розв’язків не має , а до другого застосуємо такі перетворення:

 

Таким чином,

 

або

 

Приклад 5.35. Розв’язати рівняння

Розв’язання. До лівої частини рівняння застосуємо формулу різниці синусів, а далі отриманий вираз розкладемо на множники. Маємо:

 

 

Приклад 5.36. Розв’язати рівняння

Розв’язання. ОДЗ цього рівняння знаходиться з умови , тобто . Звільнившись від знаменника,отримаємо , , , . Остання множина при збігається з множиною , яка не входить в ОДЗ. Тому наведене рівняння розв’язків не має.

Приклад 5.37. Розв’язати рівняння

Розв’язання. Скористаємося основною тригонометричною тотожністю і перепишемо рівняння у вигляді

 

Покладемо і розв’яжемо квадратне рівняння: , де . Оскільки , то рівняння розв’язків не має. Розв’язком рівняння , а значить, і всього рівняння є множина

 

Приклад 5.38. Розв’язати рівняння

Розв’язання. Оскільки для будь-якого розв’язку цього рівняння , то поділимо це рівняння на . Отримаємо рівняння . Звідси

, або .

Приклад 5.39. Розв’язати рівняння

Розв’язання. Використовуючи формулу подвійного кута, перепишемо рівняння у вигляді а потім поділимо його на . Отримаємо Останнє рівняння є алгебраїчним рівнянням відносно , а саме Розв’язок цього рівняння такий: . Маємо:

 

Завдання для самостійної роботи

5.18. Розв’язати найпростіші тригонометричні рівняння:

а) ; b) ; c) ; d)

e) ; f) ; g) ; h) .

Розв’язки рівнянь зобразити на тригонометричному колі.

 

Розв’язати тригонометричні рівняння:

5.19. а) ; b) ; c) ;

d) ; e) ; f) .

5.20. 5.21. 5.22.

5.23. 5.24. 5.25.

5.26. 5.27. 5.28.

5.29. 5.30. 5.31.

5.32. 5.33.

5.34. 5.35.

5.36. 5.37.

5.38. 5.39. .

 

5.7 Тригонометричні нерівності

 

Розв’язання тригонометричних нерівностей зводиться, як правило, до розв’язання найпростіших тригонометричних нерівностей вигляду , і

т. п., а також до розв’язання сукупностей або систем тригонометричних нерівностей. Для розв’язання найпростіших тригонометричних нерівностей зручно користуватися тригонометричним колом. Множина значень змінної величини, яка задовольняє дану найпростішу нерівність, зображується на тригонометричному колі у вигляді однієї або кількох дуг. При цьому зазначимо, що якщо точка кола відповідає числу , то вона відповідає і всім числам вигляду

Приклад 5.40. Розв’язати нерівність

Розв’язання. За означенням – це абсциса точки на тригонометричному колі (рис. 5.11), яка відповідає числу Відкладемо на колі точки, які мають абсциси, що дорівнюють ( ). Це точки А і B . Геометричним розв’язком наведеної нерівності буде замкнена дуга AmB тому, що

 

, або

 

  Рис. 5.11   Рис. 5.12

 

Приклад 5.41. Розв’язати нерівність .

Розв’язання. Функція не визначена в точках і при (рис. 5.12). Проведемо вісь тангенсів перпендикулярно до осі абсцис . Промінь перетинає одиничне коло в точці С :

 

Функція монотонно зростає при тому нерівність буде виконуватися для всіх точок відкритої дуги СmМ. Оскільки головний період функції дорівнює , то наведена нерівність буде виконуватися для всіх точок дуги ЕрN. Складемо аналітичний запис вказаних дуг:

 

Приклад 5.42. Розв’язати нерівність .

Розв’язання. Перепишемо нерівність у вигляді

 

Остання нерівність рівносильна системам нерівностей

(1) і (2)

Геометричний розв’язок систем (1) і (2) подано на рис. 5.13 і 5.14 відповідно. Це будуть дуги AmC і FpM. Об’єднуючи ці дуги, запишемо аналітичний запис розв’язків:

 

Приклад 5.43. Розв’язати нерівність

Розв’язання. Запропоновану тригонометричну нерівність перетворимо до алгебраїчної нерівності відносно величини :

 

 

  Рис. 5.13   Рис. 5.14

 

Розв’язком останньої нерівності є сукупність множин:

або

Геометричний розв’язок тригонометричних нерівностей зображено на рис. 5.15 і 5.16. Це дуги DmC, EpF, SpR і PmQ.

  Рис. 5.15   Рис. 5.16

 

 

Аналітичним розв’язком наведеної нерівності буде множина

 

Завдання для самостійної роботи

Розв’язати тригонометричні нерівності:

5.40. 5.41. 5.42. 5.43.

5.44. 5.45. 5.46.

5.47. 5.48. 5.49

 

– Конец работы –

Эта тема принадлежит разделу:

Елементарні формули алгебри. Спрощення алгебраїчних виразів.

Розділ Алгебраїчні перетворення... Многочлени від однієї змінної Ділення многочленів з остачею Теорема Безу...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Тригонометричні рівняння

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Теорема Безу
Загальний вигляд многочлена: , де – ім'я; – степінь; – аргумент; – коефіцієнт; – старший коефіцієнт (якщо – многочлен зведений); – старший член; – вільний член.

Корені многочлена. Теорема Вієта
Теорема (про раціональні корені многочлена). Якщо раціональне число ( , – цілі взаємно прості числа) – корінь многочлена з цілими коефіцієнтами, то – дільник вільного члена, – діль

Раціональних дробів на прості дроби
Означення 1. Дріб вигляду , де – многочлени, називається раціональним; якщо , то раціональний дріб є правильним. Означення 2. Раціональні дроби де називаю

Розв’язання.
, якщо ( це ОДЗ перетворень). Приклад 1.12.Спростити вираз   Розв’язання. ОДЗ:   Звільнимося від і

Тригонометричні функції числового аргументу
Наведемо означення тригонометричних функцій числового аргументу. Синусом числа ( ) називається ордината точки C, яка утворюється в результаті повороту радіус-вектора = {0,

Основні формули тригонометрії. Формули зведення. Перетворення тригонометричних виразів
  У процесі перетворення тригонометричних виразів широко застосовуються такі формули. 1. Формули додавання:   . 2. Формули кратних аргументів

Розв’язання.
  У перетвореннях тригонометричних виразів застосовувалися формули подвійного аргументу для і . Слід звернути увагу на те, що наведені дії можливі лише тоді, коли тобто , або .

Властивості логарифмів. Логарифмічні перетворення
  При перетворенні логарифмічних виразів треба враховувати властивості показникової та логарифмічної функцій:   1) 2) 3) 4)

Означення функції та її властивості
Означення функції. Правило (закон) відповідності між множинами і , за яким для кожного елемента з множини можна знайти один і тільки один елемент з множини , називається функцією.

Графіки алгебраїчних функцій
  Лінійна функція. Функція вигляду називається лінійною функцією. Графіком функції є пряма лінія, яку можна побудувати за двома точками. Наприклад, якщо

Графіки показникової та логарифмічної функцій
Означення.Функція вигляду де – будь-яке додатне число, що не дорівнює , а – будь-яке дійсне число, називаєтьсяпоказниковою. Графіки показникової функції для зн

Побудова графіків функцій за допомогою геометричних перетворень
У табл. 4.4 показано, як за допомогою геометричних перетворень (паралельний перенос, симетрія, стиск і розтяг) можна отримати графіки відповідних функцій з графіка функції Таблиця 4.4

Рівняння та нерівності. Основні означення
Рівнянням з однією змінною називається рівність, що містить цю змінну, яку називають невідомою. Розв’язком ( або коренем) рівняння називається таке значен

Метод інтервалів. Раціональні нерівності
  Розглянемо функцію     Якщо всі нулі чисельника та знаменника відмітити на числовій прямій, то вони розіб’ють її на проміжків. Усередині кожного

Розв’язання.
1. Нулі заданої функції – . Вони розбивають числовий інтервал на 4 проміжки (рис. 5.3). Оскільки нерівність не строга, то точки і включаємо до розв’язку.     Ри

Рівняння та нерівності, що містять під знаком абсолютної величини
Нагадаємо означення модуля або абсолютної величини числа: модулем називається само число , якщо і , якщо :   Наприклад, якщо , то . А у випадку значення модуля таке: .

Розв’язання.
Приклад 5.22 . Розв’язати рівняння Розв’язання. Винесемо за дужки Отримаємо:   Приклад 5.23. Розв’язати рівняння

Означення комплексного числа
У шкільному курсі математики розглядаються такі числові множини: натуральні числа , цілі числа , раціональні числа і дійсні числа . При цьому , тобто кожна подальша множина включає попередню і біль

Алгебраїчні дії з комплексними числами
Нехай і . Застосовуючи властивості арифметичних дій, маємо: 1) додавання (віднімання): ; 2) множення: ; 3) ділення: . Остання дія була виконан

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги