рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Алгебраїчні дії з комплексними числами

Алгебраїчні дії з комплексними числами - раздел Математика, Елементарні формули алгебри. Спрощення алгебраїчних виразів. Нехай І . Застосовуючи Властивості Арифметичних Дій, Маємо: 1) Додав...

Нехай і . Застосовуючи властивості арифметичних дій, маємо:

1) додавання (віднімання): ;

2) множення:

;

3) ділення:

.

Остання дія була виконана з урахуванням властивості спряжених комплексних чисел: . Завдяки множенню знаменника на його спряжене у знаменнику одержано дійсне число, яке далі розглядається як коефіцієнт.

Піднесення комплексного числа до степеня n та обчислення кореня n-го степеня краще виконувати у тригонометричній формі.

Нехай . Тоді:

а) піднесення до степеня n: – формула Муавра;

б) обчислення кореня n-го степеня: , .

Зауваження 1. Важливо знати значення різних степенів числа :

, , , , , , … Отже, . Крім того; .

Зауваження 2. З урахуванням властивостей тригонометричних функцій корінь

n-го степеня з будь-якого комплексного числа має рівно n різних значень.

Приклад 6.1. Знайти суму, різницю, добуток і частку комплексних чисел .

Розв’язання: 1) ;

2) ;

3) ;

4) .

Приклад 6.2. Знайти суму, різницю, добуток і частку комплексних чисел .

Розв’язання: 1) ( – дійсне число);

2) ( – уявне число);

3) ( – дійсне число);

4) .

Приклад 6.3.Записати числа , у тригонометричній формі.

Розв’язання.За формулою , де , а

, знаходимо:

: , , , ;

, , ,

;

: , , , ;

: , , ,

.

Приклад 6.4.Обчислити: а) ; б) .

Розв’язання: а) За формулою маємо

( ).

б) Якщо , то . Отже, у тригонометричній формі маємо . За формулою Муавра з урахуванням і одержимо

.

Оскільки період функцій і , то аргументи цих функцій краще записати так: . Отже, з урахуванням періодичності відповідних функцій і формул зведення маємо

.

Запишемо останній вираз у алгебраїчній формі. Оскільки , маємо .

Приклад 6.5.Обчислити .

Розв’язання. Оскільки корінь n-го степеня з комплексного числа обчислюється за формулою , запишемо число у тригонометричній формі: , тобто . Отже, . Задамо і одержимо три різні корені.

Відповідь: ;

;

 

(якщо , тобто для корені відповідно збігаються).

Зауваження 3. 1) корінь 3-го степеня має три різні значення; 2) арифметичний корінь (на множині дійсних чисел) збігається з ; 3) два інші корені є спряженими комплексними числами: .

Приклад 6.6.Розв’язати рівняння: а) ; б) .

Розв’язання.а) .

б) Такі рівняння легко розв’язувати, якщо виділити повний квадрат. Отже, .

Завдання для самостійної роботи

Обчислити:

6.1. . 6.2. .

6.3. . 6.4. . 6.5. . 6.6. .

6.7. . 6.8 . 6.9. . 6.10. .

6.11. . 6.12. . 6.13. . 6.14. .

Розв’язати рівняння та зобразити їхні корені на комплексній площині:

6.15. . 6.16. . 6.17. . 6.18. .

6.19. . 6.20. . 6.21. . 6.22. .

– Конец работы –

Эта тема принадлежит разделу:

Елементарні формули алгебри. Спрощення алгебраїчних виразів.

Розділ Алгебраїчні перетворення... Многочлени від однієї змінної Ділення многочленів з остачею Теорема Безу...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Алгебраїчні дії з комплексними числами

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Теорема Безу
Загальний вигляд многочлена: , де – ім'я; – степінь; – аргумент; – коефіцієнт; – старший коефіцієнт (якщо – многочлен зведений); – старший член; – вільний член.

Корені многочлена. Теорема Вієта
Теорема (про раціональні корені многочлена). Якщо раціональне число ( , – цілі взаємно прості числа) – корінь многочлена з цілими коефіцієнтами, то – дільник вільного члена, – діль

Раціональних дробів на прості дроби
Означення 1. Дріб вигляду , де – многочлени, називається раціональним; якщо , то раціональний дріб є правильним. Означення 2. Раціональні дроби де називаю

Розв’язання.
, якщо ( це ОДЗ перетворень). Приклад 1.12.Спростити вираз   Розв’язання. ОДЗ:   Звільнимося від і

Тригонометричні функції числового аргументу
Наведемо означення тригонометричних функцій числового аргументу. Синусом числа ( ) називається ордината точки C, яка утворюється в результаті повороту радіус-вектора = {0,

Основні формули тригонометрії. Формули зведення. Перетворення тригонометричних виразів
  У процесі перетворення тригонометричних виразів широко застосовуються такі формули. 1. Формули додавання:   . 2. Формули кратних аргументів

Розв’язання.
  У перетвореннях тригонометричних виразів застосовувалися формули подвійного аргументу для і . Слід звернути увагу на те, що наведені дії можливі лише тоді, коли тобто , або .

Властивості логарифмів. Логарифмічні перетворення
  При перетворенні логарифмічних виразів треба враховувати властивості показникової та логарифмічної функцій:   1) 2) 3) 4)

Означення функції та її властивості
Означення функції. Правило (закон) відповідності між множинами і , за яким для кожного елемента з множини можна знайти один і тільки один елемент з множини , називається функцією.

Графіки алгебраїчних функцій
  Лінійна функція. Функція вигляду називається лінійною функцією. Графіком функції є пряма лінія, яку можна побудувати за двома точками. Наприклад, якщо

Графіки показникової та логарифмічної функцій
Означення.Функція вигляду де – будь-яке додатне число, що не дорівнює , а – будь-яке дійсне число, називаєтьсяпоказниковою. Графіки показникової функції для зн

Побудова графіків функцій за допомогою геометричних перетворень
У табл. 4.4 показано, як за допомогою геометричних перетворень (паралельний перенос, симетрія, стиск і розтяг) можна отримати графіки відповідних функцій з графіка функції Таблиця 4.4

Рівняння та нерівності. Основні означення
Рівнянням з однією змінною називається рівність, що містить цю змінну, яку називають невідомою. Розв’язком ( або коренем) рівняння називається таке значен

Метод інтервалів. Раціональні нерівності
  Розглянемо функцію     Якщо всі нулі чисельника та знаменника відмітити на числовій прямій, то вони розіб’ють її на проміжків. Усередині кожного

Розв’язання.
1. Нулі заданої функції – . Вони розбивають числовий інтервал на 4 проміжки (рис. 5.3). Оскільки нерівність не строга, то точки і включаємо до розв’язку.     Ри

Рівняння та нерівності, що містять під знаком абсолютної величини
Нагадаємо означення модуля або абсолютної величини числа: модулем називається само число , якщо і , якщо :   Наприклад, якщо , то . А у випадку значення модуля таке: .

Розв’язання.
Приклад 5.22 . Розв’язати рівняння Розв’язання. Винесемо за дужки Отримаємо:   Приклад 5.23. Розв’язати рівняння

Тригонометричні рівняння
  Не існує єдиного методу побудови розв’язку тригонометричних рівнянь. Можна лише зазначити, що перетворення тригонометричних виразів має бути спрямовано на те, щоб рівняння набувало

Означення комплексного числа
У шкільному курсі математики розглядаються такі числові множини: натуральні числа , цілі числа , раціональні числа і дійсні числа . При цьому , тобто кожна подальша множина включає попередню і біль

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги