рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Тригонометричні функції числового аргументу

Тригонометричні функції числового аргументу - раздел Математика, Елементарні формули алгебри. Спрощення алгебраїчних виразів. Наведемо Означення Тригонометричних Функцій Числового Аргументу. ...

Наведемо означення тригонометричних функцій числового аргументу.

Синусом числа ( ) називається ордината точки C, яка утворюється в результаті повороту радіус-вектора = {0,1} на кут радіан. Якщо , то поворот здійснюється проти ходу годинникової стрілки і вважається додатним, а якщо , то поворот – від’ємний і здійснюється за ходом годинникової стрілки.

Косинусом числа ( ) називається абсциса точки С.

Тангенсомчисла ( ) називається ордината точки В, яка розташована на перетині продовження радіус-вектора з віссю тангенсів (пряма, проведена через точку А(1,0) перпендикулярно до осі ОХ).

Котангенсомчисла ( ) називається Рис. 2.1

абсциса точки К, яка лежить на перетині продовження радіус-вектора з віссю котангенсів (пряма, проведена через точку М(0,1) перпендикулярно до осі ОY).

Іноді використовуються ще дві тригогонометричні функції, а саме секанс числа ( ) і косеканс числа ( ). Ці функції вводяться таким чином:

, .

Між тригонометричними функціями кута існують прості співвідношення:

; , ;

, ; , ;

, ; , .

набуває додатних значень у першій ( ) та другій ( ) чвертях і від’ємних – у третій ( ) та четвертій ( ); набуває додатних значень у першій та четвертій чвертях і від’ємних – у другій та третій; і – додатних у першій та третій чвертях і від’ємних – у другій та четвертій (рис. 2.2).

Згідно з означенням тригонометричних функцій мають місце такі формули:

, , ,

, ,

 

Рис. 2.2

для будь-якого значення і

, , ,

для будь-якого допустимого значення .

Табличні значення тригонометричних функцій гострих кутів наведено в табл. 2.1.

Таблиця 2.1

Функція Кут : радіани (градуси)
         
           
           
         
         

 

Приклад 2.1. Визначити знаки таких виразів: а) б)

в) де .

Розв’язання: а) кут належить другій чверті, тому ; б) кут належить першій чверті, тому ; в) значення кута не перевищує , тому вираз належить другій чверті. Синус і косинус кутів другої чверті мають різні знаки, тому .

Приклад 2.2. Обчислити

Розв’язання. Аргументи тригонометричних функції – табличні. Значення тригонометричних функцій від цих аргументів – відомі, а саме:

 

Тому

Приклад 2.3. Обчислити , якщо і .

Розв’язання. Оскільки , то або Оскільки , то

 

Завдання для самостійної роботи

2.01.Побудувати кут: 1) синус якого дорівнює: a) b) c) 2) косинус якого дорівнює: a) b) c) 3) тангенс якого дорівнює: a) b) c) котангенс якого дорівнює: a) b) c) .

2.02. Визначити знаки таких виразів: а) b) c)

d) e) , де f) , де

g) h)

2.03.Обчислити: а) b)

c) d)

e) f)

2.04. Для яких чвертей проміжку виконуються нерівності: а)

b) c) d)

2.05. До яких чвертей належить кут, якщо: а) ; b) ; c)

d)

2.06. Чи існує таке значення щоб: а)

b) c) d)

2.07. Обчислити , , , якщо: а) і b) і

 

– Конец работы –

Эта тема принадлежит разделу:

Елементарні формули алгебри. Спрощення алгебраїчних виразів.

Розділ Алгебраїчні перетворення... Многочлени від однієї змінної Ділення многочленів з остачею Теорема Безу...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Тригонометричні функції числового аргументу

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Теорема Безу
Загальний вигляд многочлена: , де – ім'я; – степінь; – аргумент; – коефіцієнт; – старший коефіцієнт (якщо – многочлен зведений); – старший член; – вільний член.

Корені многочлена. Теорема Вієта
Теорема (про раціональні корені многочлена). Якщо раціональне число ( , – цілі взаємно прості числа) – корінь многочлена з цілими коефіцієнтами, то – дільник вільного члена, – діль

Раціональних дробів на прості дроби
Означення 1. Дріб вигляду , де – многочлени, називається раціональним; якщо , то раціональний дріб є правильним. Означення 2. Раціональні дроби де називаю

Розв’язання.
, якщо ( це ОДЗ перетворень). Приклад 1.12.Спростити вираз   Розв’язання. ОДЗ:   Звільнимося від і

Основні формули тригонометрії. Формули зведення. Перетворення тригонометричних виразів
  У процесі перетворення тригонометричних виразів широко застосовуються такі формули. 1. Формули додавання:   . 2. Формули кратних аргументів

Розв’язання.
  У перетвореннях тригонометричних виразів застосовувалися формули подвійного аргументу для і . Слід звернути увагу на те, що наведені дії можливі лише тоді, коли тобто , або .

Властивості логарифмів. Логарифмічні перетворення
  При перетворенні логарифмічних виразів треба враховувати властивості показникової та логарифмічної функцій:   1) 2) 3) 4)

Означення функції та її властивості
Означення функції. Правило (закон) відповідності між множинами і , за яким для кожного елемента з множини можна знайти один і тільки один елемент з множини , називається функцією.

Графіки алгебраїчних функцій
  Лінійна функція. Функція вигляду називається лінійною функцією. Графіком функції є пряма лінія, яку можна побудувати за двома точками. Наприклад, якщо

Графіки показникової та логарифмічної функцій
Означення.Функція вигляду де – будь-яке додатне число, що не дорівнює , а – будь-яке дійсне число, називаєтьсяпоказниковою. Графіки показникової функції для зн

Побудова графіків функцій за допомогою геометричних перетворень
У табл. 4.4 показано, як за допомогою геометричних перетворень (паралельний перенос, симетрія, стиск і розтяг) можна отримати графіки відповідних функцій з графіка функції Таблиця 4.4

Рівняння та нерівності. Основні означення
Рівнянням з однією змінною називається рівність, що містить цю змінну, яку називають невідомою. Розв’язком ( або коренем) рівняння називається таке значен

Метод інтервалів. Раціональні нерівності
  Розглянемо функцію     Якщо всі нулі чисельника та знаменника відмітити на числовій прямій, то вони розіб’ють її на проміжків. Усередині кожного

Розв’язання.
1. Нулі заданої функції – . Вони розбивають числовий інтервал на 4 проміжки (рис. 5.3). Оскільки нерівність не строга, то точки і включаємо до розв’язку.     Ри

Рівняння та нерівності, що містять під знаком абсолютної величини
Нагадаємо означення модуля або абсолютної величини числа: модулем називається само число , якщо і , якщо :   Наприклад, якщо , то . А у випадку значення модуля таке: .

Розв’язання.
Приклад 5.22 . Розв’язати рівняння Розв’язання. Винесемо за дужки Отримаємо:   Приклад 5.23. Розв’язати рівняння

Тригонометричні рівняння
  Не існує єдиного методу побудови розв’язку тригонометричних рівнянь. Можна лише зазначити, що перетворення тригонометричних виразів має бути спрямовано на те, щоб рівняння набувало

Означення комплексного числа
У шкільному курсі математики розглядаються такі числові множини: натуральні числа , цілі числа , раціональні числа і дійсні числа . При цьому , тобто кожна подальша множина включає попередню і біль

Алгебраїчні дії з комплексними числами
Нехай і . Застосовуючи властивості арифметичних дій, маємо: 1) додавання (віднімання): ; 2) множення: ; 3) ділення: . Остання дія була виконан

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги