рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Определение 2: Множество с заданным на нем порядком называется упорядоченным множеством.

Определение 2: Множество с заданным на нем порядком называется упорядоченным множеством. - раздел Математика, КУРС ЛЕКЦИЙ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ Очевидно, Что Множество, Содержащее Более Одного Элемента, Можно Упорядочить ...

Очевидно, что множество, содержащее более одного элемента, можно упорядочить не единственным способом.

Например, из двух букв и можно построить упорядоченное множество двумя различными способами:

и .

Три буквы , и можно расположить в виде последовательности шестью способами:

, , , , , .

Для четырех букв путем перебора получим уже 24 различных упорядоченных последовательностей.

Упорядоченные последовательности элементов некоторого множества можно рассматривать как распределения или расстановки этих элементов в последовательности.

Определение 3: Пусть дано конечное множество из элементов. Всякий набор из элементов данного множества (при этом элементы в наборе могут и повторяться) будем называть - расстановками.

Через понятие расстановки вводятся основные определения комбинаторики: сочетания, размещения и перестановки. При этом каждое из этих понятий может быть с повторениями и без повторений. В данном параграфе будут рассмотрены комбинаторные формулы без повторений.

 

Перестановки без повторений.

Определение 4: Пусть - конечное множество из элементов. Перестановками из различных элементов множества называются все расположения элементов в определенном порядке. Обозначается: (от французского слова permutation - перестановка).

Упорядоченные множества считаются различными, если они отличаются либо своими элементами, либо их порядком.

Определение 5: Различные упорядоченные множества, которые отличаются лишь порядком элементов, называются перестановками этого множества.

Последнее определение сформулировано с позиции теории множеств.

Определение 6: Произведение последовательных натуральных чисел в математике обозначают и называют факториалом.

Выбор для обозначения восклицательного знака, возможно, связан с тем, что даже для сравнительно небольших значений число очень велико. Например, , , , , , , и т.д.

Теорема 1: Число перестановок из различных элементов вычисляется по формуле:

(1)

Доказательство. Рассмотрим произвольное множество из элементов. Построим всевозможные расстановки из этих элементов. На первое место расстановки можно поставить любой из элементов (способов выбора первого элемента). После того, как первый элемент выбран и независимо как он выбран, второй элемент можно выбрать способом. Для выбора третьего элемента остается способа и т.д. Последний элемент выбирается соответственно одним способом. Тогда, в силу комбинаторного принципа умножения, количество таких расстановок будет равно:

Теорема доказана.

Пример 1: Сколькими способами трое друзей могут занять в кинотеатре места с номерами 1, 2 и 3.

Решение. Количество искомых способов будет равно числу перестановок без повторений из трех элементов: способов. При необходимости эти способы можно перебрать.

Перестановки букв некоторого слова называют анаграммами. Открытые еще в ІІІ веке до нашей эры греческим грамматиком Ликофроном анаграммы до сих пор привлекают внимание языковедов, поэтов и любителей словесности. Мастера словесных игр помимо эрудиции и большого запаса слов знают много секретов, связанных с комбинаторными навыками, один из которых – анаграммы. Часто требуется среди всех перестановок выбрать те, которые обладают определенным свойством. Например, среди анаграмм слова «крот», которых всего , только одна, не считая самого слова «крот», имеет смысл в русском языке – «корт».

Кроме линейных перестановок, можно рассматривать перестановки круговые (или циклические). В этом случае перестановки, переходящие друг в друга при вращении, считаются одинаковыми и не должны засчитываться.

Теорема 2: Число круговых перестановок из различных элементов равно

Пример 2: Сколькими способами 7 детей могут стать в хоровод?

Решение. Число линейных перестановок 7 детей будет равно . Если хоровод уже сформирован, тогда для него существует 7 круговых перестановок, переходящих друг в друга при повороте. Эти перестановки не должны быть засчитаны, поэтому круговых перестановок из 7 элементов будет .

 

Размещения без повторений.

Определение 7: Пусть имеется различных предметов. Расстановки из элементов по элементов () называются размещениями без повторений. Обозначают: . Здесь имеется в виду, что элементы в расстановках не повторяются.

В данном определении существенной является следующая позиция: две расстановки различны, если они отличаются хотя бы одним элементом или порядком элементов.

Приведем еще одно определение размещений, эквивалентное исходному, более простое для понимания.

– Конец работы –

Эта тема принадлежит разделу:

КУРС ЛЕКЦИЙ ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ

ВОСТОЧНОУКРАИНСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ... имени ВЛАДИМИРА ДАЛЯ... Фесенко Т Н...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Определение 2: Множество с заданным на нем порядком называется упорядоченным множеством.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ
(для студентов специальности «Прикладная математика», «Информатика», «Системный анализ», «Компьютерные системы и сети»)

Прямое произведение множеств. Бинарные отношения.
  Пусть и - произвольные элементы. Из элементов

Представление бинарных отношений графами.
Понятие графа используется в математике для наглядного представления бинарных отношений, заданных на конечных множествах. Граф представляет собой конечный набор точек плоскости (

И порядка. Фактор-множество.
  В данном параграфе будут рассмотрены некоторые виды бинарных отношений. Рассмотрим непустое множество и зададим на нём бинар

Булевы алгебры.
  Определение 1: Пусть - отношение порядка на множестве

Определение 7: Дистрибутивная решетка с отличными друг от друга 0 и 1, в которой всякий элемент имеет дополнение, называется булевой алгеброй.
Отметим, что теория решеток и теория булевых алгебр – это самостоятельные разделы алгебры. Определение 8: Линейно упорядоченное множество, удовлетворяющее условию мини

Мощность множества. Сравнение мощностей.
  Пусть даны конечные множества и , число элементов которых равно

Определение 2: Множества, обладающие одинаковой мощностью, называются равномощными (эквивалентными).
Два конечных множества будут равномощными, если в них содержится одинаковое число элементов. Если имеем дело с бесконечными множествами, то вопросы, связанные с мощностями, решаются путём установле

Определение 3: Множество, эквивалентное множеству чисел натурального ряда, называется счетным.
Натуральный ряд чисел – это счётное множество. Все множества, равномощные множеству , имеют такую же мощность. Теорема 4:

Трансфинитная индукция.
  Понятие мощности множества является обобщением понятия количества элементов конечного множества. А число элементов во множестве – это натуральное число. Но над натуральными числами

Определение 3: Если два линейно упорядоченных множества изоморфны, то их называют подобными множествами.
Подобие для линейно упорядоченных множеств - есть бинарное отношение между линейно упорядоченными множествами, являющееся отношением эквивалентности. Фактор-множество по этому отношению эквивалентн

Задачи для самостоятельной работы.
1) Доказать, что два множества равны тогда и только тогда, когда их пересечение и объединение совпадают. 2) Обозначим через множес

Отрицание – обозначается ,читается:«не » или «неверно, что ».
2) Дизъюнкция (логическое сложение), обозначаемое(читается «и

Формулы алгебры логики. Тавтологии.
  В алгебре выводятся формулы, которые остаются верными, какие бы числа не подставляли вместо букв, входящих в эти формулы. Подобным образом в алгебре высказываний конструируются форм

Доказательство.
Необходимость: Пусть формулы и равносильны. Тогда, по определению, для люб

Определение 3: Множество всех значений таких, что предикат при этих значениях принимает значение «истина», называется областью истинности предиката.
Определение 4: Предикат , определённый на множестве , называе

Формулы и тавтологии логики предикатов.
  При введении определения формул логики предикатов будем использовать следующие обозначения (алфавит): 1) – индивид

Формальный язык логики высказываний.
  Таблицы истинности в логике высказываний позволяют ответить на многие вопросы. Например, является ли данная формула тавтологией, противоречием или выполнимой формулой; влечёт ли она

Предикатов. Свойства теорий первого порядка.
  Для записи формул логики предикатов используется следующий алфавит: скобки, запятые, символы исчисления высказываний (отрицание

Задачи для самостоятельной работы.
1.Определить истинность следующих высказываний, если , ,

Определение формулы и суперпозиции.
  Пусть имеется счетное множество переменных , где

Принцип двойственности.
  Пусть – некоторое подмножество множества булевых функций: .

Линейные функции. Монотонные функции.
  Рассмотрим систему функций: , ,

Теорема Поста.
  В предыдущем параграфе были рассмотрены некоторые классы булевых функций. В каждый класс попадают функции, обладающие определённым свойством. Для удобства введём следующие обозначен

Задачи для самостоятельной работы.
1) Сколько имеется различных двоичных наборов длины ? 2) Сколько имеется

Правила комбинаторики.
  Начнем с основных принципов комбинаторики, т.е. с правил. Существует два общих правила комбинаторики: правило сложения и правило умножения. Правило слож

Определение 8: Конечные упорядоченные множества называются размещениями.
Теорема 3: Количество всех размещений из элементов по элемен

Определение 10: Конечные неупорядоченные множества называются сочетаниями.
Таким образом, сочетания – это такая выборка элементов, при которой их порядок совершенно не важен. Сочетаний из элементов по

Свойства сочетаний.
  Одной из наиболее распространённых комбинаторных формул является формула числа сочетаний. Для упрощения подсчётов и для доказательства некоторых утверждений удобно использовать след

Комбинаторика с повторениями.
  Одна из особенностей комбинаторных задач заключается в том, что в ней исключительно большую роль играет точность формулировки. Обычно в задаче по комбинаторике необходимо определить

Определение 2: Группы, составленные из объектов, которые принадлежат одному из типов элементов, называют сочетаниями с повторениями.
Число всевозможных сочетаний с повторениями обозначают следующим символом: . Сочетания с повторениями, как было показано в примере

Упражнения для самостоятельной работы.
  1. Сколько всегочетырёхзначных натуральныхчисел? Сколько всего четырёхзначных натуральныхчисел, в записи которых нет одинаковых цифр?  

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги