рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Теорема Пикара (док-во единственности решения задачи Коши).

Теорема Пикара (док-во единственности решения задачи Коши). - раздел Математика, Обыкновенные ДУ: определение, порядок, решение, интегральная кривая, интегрирование, интегрирование в квадратурах Дано: ...

Дано:

= f(x,y) (1)y(x0) = y0 (2)

1) D = {(x,y) : |x-x0| ≤ a, |y-y0| ≤ b}}, где a, b – некоторые известные положит. числа, из св-в непрер. ф-ции замкнут. обл. => такого числа М, что для всех точек (x,y)ϵ D : |f(x,y)| ≤ M.

2) |f(x,y1) - f(x,y2)| ≤ L |y1 – y2|, где L – постоянная Липшица.[ Условие Липшица: если для любых точек х и х', принадлежащих отрезку [а, b], приращение функции удовлетворяет неравенств ∣f(x) — f(x')∣ ≤ L∣х - х'∣α, где 0 < α ≤ 1 и L — некоторая постоянная].

Ǝ У(х) удовл. нач. условиям у(х0) = у0 ,определённое и непрер. диф-мое для знач. х из интервала |x-x0| ≤ h, где h = min{a, } и х не выходит из обл. D.

Док-во.

Докажем единственность найденного решения, удовлетвор.начальному условиюот противного.

Пусть на отрезке ,кроме решения У(х) существует другое решение Z(x), удовлетворяющее тому же нач. усл..Без ограничения общности можно предположить,что значение х,для кот. находящиеся вправо от х0 в любой близости от х0.Рассмотрим любой малый , на кот. .

Так как У(х) и равны не во всех точках этого отрезка, то в некоторой точке х=х1, лежащей в интервале абсолютной величиной разности == достигает наибольшего значения

2 решения

т.е,

Что невозможно, т.к е>0, поэтому его можно выбрать сколь угодно мало.Противоречие показывает, что на промежутке .Аналогично доказывается совпадение на промужутке ,т.е решение единственно.

Зам.1. В ходе док-ва заменили ДУ (1) интегральным уравнением (3),так как условие для равномерной сходимости последовательности интегралов значительно проще последовательности производн.

Зам.2. Док-во существования ДУ(1) проверено методом последовательных приближений в предположении,что правая часть ДУ удовлетворяет усл.Липшеца по переменной у.При помощи др. методов модно док-ть существ-е решения достаточно потребовать непрерывность ф-ции f(x,y) по обеим переменным (этого условия не обеспечит!!!)Метод последоват. Приближений – конструктивный метод,дающий способ приближ. Решения с определённой степенью точности.

Зам. 3. Условие Липшица заведомо выполняется в той области, где f(x,y) имеет огранниченную састную производную по х.Но!!!неравенсво Лимпшеца может выполняться тогда, когда существует невсюду.

– Конец работы –

Эта тема принадлежит разделу:

Обыкновенные ДУ: определение, порядок, решение, интегральная кривая, интегрирование, интегрирование в квадратурах

Пусть ф ция F ф ция n переменных Надо найти ф цию у х удовл на некот промежутке I ур ию F x y x y x y n x... Опр Обыкновенным ДУ наз соотношение вида F x y x y x y n x... Опр Порядком ДУ наз порядок старшей производной неизв ф ции у у х вход в уравнение...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Теорема Пикара (док-во единственности решения задачи Коши).

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Задачи, приводящие к ДУ.
Задача. В благоприятных для размножения условиях находится некоторое количество N0 бактерий. Из эксперимента известно, что скорость пропорц. их количеству. Найти зав

ДУ в полных дифференциалах.
Рассм. ур-ие вида М(х,у)dx + N(x,y)dy = 0 (1), где ф-ции М(х,у), N(x,y) – непрер. по обеим перем. в некот. связной обл. и одновременно не обращ. в 0, т.е. М2(х,у) + N

Однородные ДУ 1-го порядка.
Рассмотр. ДУ М(х,у)dx + N(x,y)dy = 0 (1). Опр.Ф-ция f(x,y) наз. однородной ф-ей степени m, если

Линейные ДУ 1-го порядка. Линейные однородные ДУ 1-го порядка.
M(x,y)dx + N(x,y)dy = 0 (1)является линейным ДУ, если оно линейно относительно искомых ф-ций. Если искомая функция у, то (1) линейно относительно у: у' = -р(х)у+g(x)

Линейные неоднородные ДУ 1-го порядка. Стр-ра общего решения. Метод Лагранжа.
M(x,y)dx + N(x,y)dy = 0 (1)является линейным ДУ, если оно линейно относительно искомых ф-ций. Если искомая функция у, то (1) линейно относительно у: у' = -р(х)у+g(x)

Линейные неоднородные ДУ 1-го порядка. Метод Бернулли. ДУ Бернулли.
M(x,y)dx + N(x,y)dy = 0 (1)является линейным ДУ, если оно линейно относительно искомых ф-ций. Если искомая функция у, то (1) линейно относительно у: у' = -р(х)у+g(x)

Общее, частное и особое решение ДУ 1-го порядка.
D⊂R2 – область в точке, которой у' = (1)имеет единств. решение. Опр. Ф-ция

ДУ n-го порядка. Общие понятия, теорема существования и единственности.
Рассм. ур-ие вида F(x, y, y', y'', …, y(n)) = 0(1). Будем предполагать, что ф-ция F такая что (1) м.б. разрешено относит. старшей произв. y(

Понятие линейной зависимости с-мы ф-ций.
у1(х), у2(х), ..., уm(x) – линейно зависимые на [a,b], если одна из них явл. линейной комбинацией других. Линейная зав-сть у1(х), у2(х)

Формула Остроградского-Лиувилля.
Для линейного ДУ L[y]=0 c непрер. коэф. имеет место формула (1), где р1(х) – коэф. при у(n

Метод Лагранжа линейных неоднородных ДУ n-го порядка.
Покажем, что общее решение ЛНДУ можно найти в квадратурах, если известно общее решение соотв. однородного ур-ия. Рассмотрим ур-ие у''(х) + р1(х) у'(х) + р0(х) у(х) =

Линейные однородные ДУ n-го порядка с постоянными коэффициентами. Характеристическое уравнение. Случай комплексного корня.
Ур-е вида (1), где,-некот. постоян. числа, i = {0,…,n-1} наз. Л

Теорема Пикара (построение эквивалентного интегрального уравнения).
Дано: = f(x,y) (1)y(x0) = y0 (2) 1) D = {(

Теорема Пикара (док-во существования решения задачи Коши).
Дано: = f(x,y) (1)y(x0) = y0 (2) 1) D = {(

Применение метода сжатых отображений для док-ва теоремы Пикара.
Опр.Пусть Х – полное метрическое пространство и пусть ,причём сущ-т действительной число α с условием 0< α <

Нормальные с-мы ДУ. Общие понятия. Механическая интерпретация. Геометрическая интерпретация.
Совокупность соотношений вида: (1),где у1,у2,...,уn – искомые ф-ции от независим. перемен.

Понятие интеграла нормально с-мы. Первый интеграл нормальной с-мы. Общий интеграл.
Рассмотрим одно из равенств с-мы (12) ψ1(х, у1, ..., уn) = Ci (13). Ф-ция ψ1(х, у1, ..., уn)

Линейные с-мы ДУ. Линейно независимые с-мы функциональных векторов. Фундаментальная с-ма. Вронскиан.
Совокупность соотношений вида: (1),где у1,у2,...,уn – искомые ф-ции от независим. перемен.

Общее решение линейной однородной с-мы ДУ с постоянными коэффициентами.
Рассм лин с-му: (1), или (1')

Приведение нормальных с-м к уравнению n-го порядка и наоборот.
1)Приведение ур-ия n-ого порядка к с-ме n ур-ий 1-ого порядка. Пусть дано ур-ие n-ого порядка: y(n) = f(x, y, y', y'', …, y(

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги