рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Векторное произведение векторов

Векторное произведение векторов - раздел Математика, И.С. Рубанов: Геометрия 1. Определение. Векторным Произведением A´b Неколлинеарных Векторов ...

1. Определение. Векторным произведением a´b неколлинеарных векторов а и b называется вектор, удовлетворяющий трем условиям:

(ВП1) Вектор a´b ортогонален векторам а и b .

(ВП2) | a´b | = |а||b|sinÐ(a,b) .

(ВП3) Базис (a,b, a´b) векторного пространства V3 положительно ориентирован.

Векторное произведение коллинеарных векторов по определению полагают равным нулевому вектору. Проверьте, что условия (ВП1) и (ВП2) выполняются и в этом случае.

Замечания. (8.1) Условие (ВП3) показывает, что векторное произведение, как и смешанное, имеет смысл только в ориентированном трехмерном векторном пространстве.

(8.2) Отложим от произвольной точки А векторы АВ = а и AD = b, достроим треугольник ABD до параллелограмма ABCD и заметим, что площадь этого параллелограмма равна |АВ||АD|sinÐBAD = |а||b|sinÐ(a,b). Таким образом, условие (ВП2) имеет простой геометрический смысл: модуль векторного произведения численно равен площади параллелограмма, построенного на векторах-сомножителях.

(8.3) Векторное произведение равно 0 тогда и только тогда, когда сомножители коллинеарны. "Тогда" здесь следует прямо из определения, а "только тогда" – из 8.2: ведь если векторы неколлинеарны, то площадь построенного на них параллелограмма отлична от 0.

Покажем, как построить векторное произведение двух данных неколлинеарных векторов. Для этого снова построим параллелограмм ABCD, у которого АВ = а и AD = b, и проведем через точку А прямую т перпендикулярно плоскости АВС. На этой прямой от точки А отложим отрезки AE и AF, длиной |а||b|sinÐ(a,b) (рис.30). В силу условий (ВП1) и (ВП2) вектор a´b должен совпадать с AE или AF. Поскольку AE = –AF, базисы (а, b, АЕ) и (а, b, АF) противоположно ориентированы (упражнение 6.6). Поэтому ровно один из этих базисов ориентирован положительно. Входящий в него вектор (AE или AF) и будет единственным, удовлетворяющим все трем условиям (ВП1)-(ВП3). Таким образом у любых двух векторов есть векторное произведение, и притом только одно.

2. Связь скалярного, векторного и смешанного произведений.

(8.4) Теорема. Для любых векторов а, b и с выполняется равенство abc = (a´b)c. Подробнее: смешанное произведение трех векторов равно векторному произведению двух первых векторов, скалярно умноженному на третий вектор.

ÿ Если векторы а и b коллинеарны, то abc = 0 в силу компланарности векторов а, b и с, а (a´b)c = 0, поскольку a´b = 0. Если векторы а и b неколлинеарны, а вектор с компланарен с ними, то abc = 0 и (a´b)c = 0, поскольку вектор a´b перпендикулярен плоскости, которой параллельны векторы а, b и с. Таким образом, в этих двух случаях теорема справедлива.

Если векторы а, b и с некомпланарны, разложим вектор с по базису (а, b, a´b):
с = xa + yb + z(a´b). Поскольку a´b ^ а и a´b ^ b, имеем:

(a´b)c = (a´b)( xa + yb + z(a´b)) = x(a´b)a + y(a´b)b + z(a´b)(a´b) = z(a´b)2 (*).

Построим прямой параллелепипед АВСDА1В1C1D1, у которого АВ = а, AD = b и АА1 = a´b. Базис (а, b, a´b) по определению положительно ориентирован. Поэтому смешанное произведение ab(a´b) положительно. Но тогда

ab(a´b) = = ·|АА1| = |a´b||a´b| = |a´b|2 = (a´b)2,

откуда

abc = ab(xa + yb + z(a´b)) = хaba + yabb + z ab(a´b) = z(a´b)2 (**),

ибо aba = abb = 0 в силу компланарности сомножителей.

Сравнивая равенства (*) и (**), получаем требуемый результат. ÿ

3. Выражение векторного произведения в координатах и его алгебраические свойства.

(8.5) Теорема. Пусть в некотором положительно ориентированном ортонормированном базисе пространства V3 заданы векторы а(а1, а2, а3) и b(b1, b2, b3). Тогда вектор a´b имеет в этом базисе координаты

(, –, ).

ÿ Пусть в данном базисе a´b(x,y,z). По формуле 5.14, теореме 8.4 и свойству 7.9 имеем:

х = (a´b)i = abi = – aib = iab = = 1– 0+ 0= . Аналогично (как?) y = jab = –, a z = kab = . ÿ

Теперь нетрудно доказать другие алгебраические свойства векторного произведения:

(8.6) a´b = – b´a (антикоммутативность) .

(8.7) (а12)´b = a1´b + a2´b и a´(b1+b2) = a´b1 + a´b2 (дистрибутивность) .

(8.8) (хa)´b = a´(xb) = х(a´b) (однородность) .

ÿ Проверим, например, антикоммутативность. По теореме 8.5

a´b(, –, ) = (a2b3–a3b2 , a3b1–a1b3 , a1b2–a2b1).

По той же теореме

b´a(, –, ) = (a3b2 – a2b3, a1b3 – a3b1, a2b1 – a1b2) = –a´b. ÿ

Вычисления, проверяющие свойства 8.7 и 8.8, проведите сами.

4. Площади параллелограмма и треугольника. Возьмем произвольный треугольник АВD и достроим его до параллелограмма ABCD. В силу замечания 8.2 площадь параллелограмма ABCD равна модулю векторного произведения АВ´AD:

(8.9) = |AB´AD|.

Площадь параллелограмма ABCD вдвое больше площади треугольника АВD. Поэтому

(8.10) = |AB´AD|.

Полученные формулы в соединении теоремой 8.5 позволяют находить площадь параллелограмма или треугольника по известным координатам векторов его сторон (базис при этом, разумеется, должен быть ортонормированным).

(8.11) Упражнение. Выведите соответствующие координатные формулы.

– Конец работы –

Эта тема принадлежит разделу:

И.С. Рубанов: Геометрия

Глава Векторы Понятие вектора Коллинеарность направленных отрезков Два направленных... Векторные пространства Координаты... Глава Метод координат Прямая на плоскости Аффинные...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Векторное произведение векторов

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Геометрия.
(Векторы. Метод координат) И.С. Рубанов. Лекции по геометрии. Векторы. Метод

Понятие вектора
1. Направленные отрезки. Отрезок называется направленным, если указано, какая из двух ограничивающих его точек считается первой (она называется его началом), а какая – второй (она называется его

Проектирование и разложение векторов
1. Проектирование точек и векторов в пространстве. Пусть в пространстве даны плоскость П и пересекающая ее прямая р. Возьмем произвольную

Координаты вектора.
1. Векторные пространства. Совокупность векторов V называется векторным пространством, если она непуста и обладает следующими двумя свойствами: (V1) Сумма любых двух векторов из

Скалярное умножение векторов
1. Определение и простейшие свойства. Возьмем ненулевые векторы а и b и отложим их от произвольной точки О: ОА = а и ОВ = b. Величина угла АОВ называется углом между векторами а и b и обозначает

Ориентация плоскости и пространства
1. Определители второго порядка. Матрицей второго порядка называется квадратная таблица размером 2´2, заполненная числами. Сами эти числа называются элементами матрицы. Они часто обозначаю

Смешанное произведение векторов
1. Определение и простейшие свойства. В отличие от чисел, у векторов существует не одно, а несколько разных “умножений”. Мы уже рассматривали скалярное умножение векторов. В этом параграфе мы по

Аффинные координаты
1. Аффинные координаты на прямой. Аффинным репером на прямой l называется упорядоченная пара R = (O, e), составленная из точки ОÎl (начала координат) и ненулевого вектора а, ||параллельно

Покажите сами, что в случае плоскости формулы (9.5) приобретают вид
(9.6') . Обычно в описанной выше ситуации репер R называют "старым", репер R' – "новым", а формулы 9

Деление отрезка в данном отношении.
1. Определение и примеры. Пусть точка С лежит на прямой (АВ) и не совпадает с точкой В. Тогда векторы AC и СВ коллинеарны, причем СВ ¹ 0, и, следовательно, существует единственное число l,

Полярные координаты.
1. Еще об ориентированных углах. Напомним, что угол называется ориентированным, если указан порядок, в котором идут его стороны, а величине ориентированного угла на ориентированной плоскости при

Различные виды уравнений прямой на плоскости.
1. Параметрические уравнения. Возьмем прямую l, заданную точкой M0Îl и направляющим вектором l || l (пишем: l = [М0, l]). Точка М лежит на прямой l тогда и только тог

Общее уравнение прямой на плоскости.
1. Вывод общего уравнения. Возьмем прямую l = [М0(х0,у0), l(a,b)] и преобразуем ее каноническое уравнение: (13.4) Û b(x–x0) = a(y–y0

Метрические задачи теории прямых на плоскости.
Метрическими называются задачи, в которых требуется найти расстояния или углы. Далее все рассматриваемые системы координат предполагаются прямоугольными декартовыми. На произвольные АСК полученн

Различные виды уравнений плоскости.
Плоскость П в пространстве задается своими точкой М0 и базисной парой, т.е., парой параллельных ей неколлинеарных векторов, образующих базис (a,b) векторной плоскости V2(П)

Общее уравнение плоскости.
1. Вывод общего уравнения. Сохраняя обозначения, введенные в §16, раскроем определитель в правой части канонического уравнения (16.3): М(х,у,z)ÎП Û (16.3) Û

Различные виды уравнений прямой в пространстве.
1. Параметрические уравнения прямой в пространстве имеют вид (18.1) , где М0(х0,y

Метрические задачи о прямых и плоскостях в пространстве.
В этом параграфе, как и в §16, мы работаем исключительно в ПДСК. Для произвольной АСК соответствующие формулы значительно сложнее. 1. Нормальный вектор плоскости – это направляющ

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги