рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Элементы векторной алгебры

Элементы векторной алгебры - раздел Математика, Элементы векторной алгебры Векторное Произведение Векторов. ...

Векторное произведение векторов.

Определение. Векторным произведениемвекторов и называется вектор , удовлетворяющий следующим условиям: 1) , где j - угол между векторами и , 2) вектор ортогонален векторам и 3) , и образуют правую тройку векторов. Обозначается: или. Свойства векторного произведения векторов: 1) ; 2) , если ïï или = 0 или = 0; 3) (m= ´(m) = m(´); 4) ´(+ ) = ´+ ´ ; 5) Если заданы векторы (xa, ya, za) и (xb, yb, zb) в декартовой прямоугольной системе координат с единичными векторами , то ´= 6) Геометрическим смыслом векторного произведения векторов является площадь параллелограмма, построенного на векторах и .

Пример. Найти векторное произведение векторов и . = (2, 5, 1); = (1, 2, -3) .

Пример. Вычислить площадь треугольника с вершинами А(2, 2, 2), В(4, 0, 3), С(0, 1, 0). (ед2).

Пример. Доказать, что векторы , и компланарны. , т.к. векторы линейно зависимы, то они компланарны.

Пример. Найти площадь параллелограмма, построенного на векторах , если (ед2).

 

Смешанное произведение векторов.

Определение. Смешанным произведением векторов , и называется число, равное скалярному произведению вектора на вектор, равный векторному произведению векторов и . Обозначается или (, ,). Смешанное произведение по модулю равно объему параллелепипеда, построенного на векторах , и .

Свойствасмешанного произведения:

1)Смешанное произведение равно нулю, если: а)хоть один из векторов равен нулю; б)два из векторов коллинеарны; в)векторы компланарны.

2)

3)

4)

5) Объем треугольной пирамиды, образованной векторами , и , равен

6)Если , , то

Пример. Доказать, что точки А(5; 7; 2), B(3; 1; -1), C(9; 4; -4), D(1; 5; 0) лежат в одной плоскости. Найдем координаты векторов: Найдем смешанное произведение полученных векторов: , Таким образом, полученные выше векторы компланарны, следовательно точки A, B, C и D лежат в одной плоскости.

Пример. Найти объем пирамиды и длину высоты, опущенной на грань BCD, если вершины имеют координаты A(0; 0; 1), B(2; 3; 5), C(6; 2; 3), D(3; 7; 2). Найдем координаты векторов: Объем пирамиды Для нахождения длины высоты пирамиды найдем сначала площадь основания BCD. Sосн = (ед2) Т.к. V = ; (ед)

Уравнение поверхности в пространстве.

Определение. Любое уравнение, связывающее координаты x, y, z любой точки поверхности является уравнением этой поверхности.

Общее уравнение плоскости.

Определение. Плоскостьюназывается поверхность, вес точки которой удовлетворяют общему уравнению: Ax + By + Cz + D = 0, где А, В, С – координаты вектора -вектор нормали к плоскости. Возможны следующие частные случаи: А = 0 – плоскость параллельна оси Ох В = 0 – плоскость параллельна оси Оу С = 0 – плоскость параллельна оси Оz D = 0 – плоскость проходит через начало координат А = В = 0 – плоскость параллельна плоскости хОу А = С = 0 – плоскость параллельна плоскости хОz В = С = 0 – плоскость параллельна плоскости yOz А = D = 0 – плоскость проходит через ось Ох В = D = 0 – плоскость проходит через ось Оу С = D = 0 – плоскость проходит через ось Oz А = В = D = 0 – плоскость совпадает с плоскостью хОу А = С = D = 0 – плоскость совпадает с плоскостью xOz В = С = D = 0 – плоскость совпадает с плоскостью yOz

Уравнение плоскости, проходящей через три точки.

Для того, чтобы через три какие- либо точки пространства можно было провести единственную плоскость, необходимо, чтобы эти точки не лежали на одной прямой.

Рассмотрим точки М1(x1, y1, z1), M2(x2, y2, z2), M3(x3, y3, z3) в общей декартовой системе координат. Для того, чтобы произвольная точка М(x, y, z) лежала в одной плоскости с точками М1, М2, М3 необходимо, чтобы векторы были компланарны. () = 0 Таким образом, Уравнение плоскости, проходящей через три точки:

Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости.

Пусть заданы точки М1(x1, y1, z1), M2(x2, y2, z2) и вектор . Составим уравнение плоскости, проходящей через данные точки М1 и М2 и произвольную точку М(х, у, z) параллельно вектору . Векторы и вектор должны быть компланарны, т.е. () = 0 Уравнение плоскости:

Уравнение плоскости по одной точке и двум векторам, коллинеарным плоскости. Пусть заданы два вектора и , коллинеарные плоскости. Тогда для произвольной точки М(х, у, z), принадлежащей плоскости, векторы должны быть компланарны.

Уравнение плоскости:

Уравнение плоскости по точке и вектору нормали.

Теорема. Если в пространстве задана точка М00, у0, z0), то уравнение плоскости, проходящей через точку М0 перпендикулярно вектору нормали (A, B, C) имеет вид: A(x – x0) + B(y – y0) + C(z – z0) = 0.

Доказательство. Для произвольной точки М(х, у, z), принадлежащей плоскости, составим вектор . Т.к. вектор - вектор нормали, то он перпендикулярен плоскости, а, следовательно, перпендикулярен и вектору . Тогда скалярное произведение ×= 0 Таким образом, получаем уравнение плоскости Теорема доказана.

 

Уравнение линии на плоскости.

Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат.

Определение. Уравнением линии называется соотношение y = f(x) между координатами точек, составляющих эту линию. Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t. Характерный пример – траектория движущейся точки. В этом случае роль параметра играет время.

Уравнение прямой на плоскости.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка Ах + Ву + С = 0, причем постоянные А, В не равны нулю одновременно, т.е. А2 + В2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:- C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат- А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох- В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу- В = С = 0, А ¹ 0 – прямая совпадает с осью Оу- А = С = 0, В ¹ 0 – прямая совпадает с осью Ох Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой , заданной уравнением Ах + Ву + С = 0. Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1). Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно С = -1. Итого: искомое уравнение: 3х – у – 1 = 0. Уравнение прямой, проходящей через две точки. Пусть в пространстве заданы две точки M1(x1, y1, z1) и M2(x2, y2, z2), тогда уравнение прямой, проходящей через эти точки: Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На плоскости записанное выше уравнение прямой упрощается: если х1 ¹ х2 и х = х1, еслих1 = х2. Дробь = k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4). Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту. Если общее уравнение прямой Ах + Ву + С = 0 привести к виду: и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k.

 

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор (a1, a2), компоненты которого удовлетворяют условию Аa1 + Вa2 = 0 называется направляющим вектором прямой Ах + Ву + С = 0. Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2). Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям: 1×A + (-1)×B = 0, т.е. А = В. Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C/A = 0. при х = 1, у = 2 получаем С/A = -3, т.е. искомое уравнение: х + у - 3 = 0 Уравнение прямой в отрезках. Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или , где Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках. С = 1, , а = -1, b = 1.

Нормальное уравнение прямой. Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем, то получим xcosj + ysinj - p = 0 – нормальное уравнение прямой. Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0. р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Пример. Дано общее уравнение прямой 12х – 5у – 65 = 0. Требуется написать различные типы уравнений этой прямой. уравнение этой прямой в отрезках: уравнение этой прямой с угловым коэффициентом: (делим на 5) нормальное уравнение прямой: ; cosj = 12/13; sinj = -5/13; p = 5. Cледует отметить, что не каждую прямую можно представить уравнением в отрезках, например, прямые, параллельные осям или проходящие через начало координат.

Пример. Прямая отсекает на координатных осях равные положительные отрезки. Составить уравнение прямой, если площадь треугольника, образованного этими отрезками равна 8 см2. Уравнение прямой имеет вид: , a = b = 1; ab/2 = 8; a = 4; -4. a = -4 не подходит по условию задачи. Итого: или х + у – 4 = 0.

Пример. Составить уравнение прямой, проходящей через точку А(-2, -3) и начало координат. Уравнение прямой имеет вид: , где х1 = у1 = 0; x2 = -2; y2 = -3.

Для самостоятельного решения: Составить уравнения прямых, проходящих через точку М(-3, -4) и параллельных осям координат. Ответ: { x + 3 = 0; y + 4 = 0}.

Угол между прямыми на плоскости.

Определение. Если заданы две прямые y = k1x + b1, y = k2x + b2, то острый угол между этими прямыми будет определяться как . Две прямые параллельны, если k1 = k2. Две прямые перпендикулярны, если k1 = -1/k2.

Теорема. Прямые Ах + Ву + С = 0 и А1х + В1у + С1 = 0 параллельны, когда пропорциональны коэффициенты А1 = lА, В1 = lВ. Если еще и С1 = lС, то прямые совпадают. Координаты точки пересечения двух прямых находятся как решение системы двух уравнений.

Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой.

Определение. Прямая, проходящая через точку М11, у1) и перпендикулярная к прямой у = kx + b представляется уравнением:

Расстояние от точки до прямой.

Теорема. Если задана точка М(х0, у0), то расстояние до прямой Ах + Ву + С =0 определяется как .

Доказательство. Пусть точка М11, у1) – основание перпендикуляра, опущенного из точки М на заданную прямую. Тогда расстояние между точками М и М1: (1) Координаты x1 и у1 могут быть найдены как решение системы уравнений: Второе уравнение системы – это уравнение прямой, проходящей через заданную точку М0 перпендикулярно заданной прямой. Если преобразовать первое уравнение системы к виду: A(x – x0) + B(y – y0) + Ax0 + By0 + C = 0, то, решая, получим: Подставляя эти выражения в уравнение (1), находим: . Теорема доказана. Пример. Определить угол между прямыми: y = -3x + 7; y = 2x + 1. K1 = -3; k2 = 2 tgj = ; j = p/4. Пример. Показать, что прямые 3х – 5у + 7 = 0 и 10х + 6у – 3 = 0 перпендикулярны. Находим: k1 = 3/5, k2 = -5/3, k1k2 = -1, следовательно, прямые перпендикулярны. Пример. Даны вершины треугольника А(0; 1), B(6; 5), C(12; -1). Найти уравнение высоты, проведенной из вершины С. Находим уравнение стороны АВ: ; 4x = 6y – 6; 2x – 3y + 3 = 0; Искомое уравнение высоты имеет вид: Ax + By + C = 0 или y = kx + b. k = . Тогда y = . Т.к. высота проходит через точку С, то ее координаты удовлетворяют данному уравнению: откуда b = 17. Итого: . Ответ: 3x + 2y – 34 = 0. Для самостоятельного решения: Даны стороны треугольника x + y – 6 = 0, 3x – 5y + 15 = 0, 5x – 3y – 14 = 0. Составить уравнения его высот. Указание: Сначала следует найти координаты вершин треугольника, как точек пересечения сторон, затем воспользоваться методом, рассмотренном в предыдущем примере. Ответ: { x – y = 0; 5x + 3y – 26 = 0; 3x + 5y – 26 = 0}.

Системы координат

Любая точка на плоскости может быть однозначно определена при помощи различных координатных систем, выбор которых определяется различными факторами. Способ задания начальных условий для решения какой – либо конкретной технической задачи может определить выбор той или иной системы координат. Для удобства проведения вычислений часто предпочтительнее использовать системы координат, отличные от декартовой прямоугольной системы. Кроме того, наглядность представления окончательного ответа зачастую тоже сильно зависит от выбора системы координат. Ниже рассмотрим некоторые наиболее часто используемые системы координат.

Полярная система координат.

– Конец работы –

Эта тема принадлежит разделу:

Элементы векторной алгебры

Определение Матрицей размера m acute n где m число строк n число столбцов называется таблица чисел расположенных в определенном порядке Эти... А В С АВ АС... А В С АС ВС Если произведение АВ определено то для любого числа a верно соотношение a AB aA B...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Элементы векторной алгебры

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Элементы векторной алгебры
Линейная зависимость векторов. Определение. Векторы называются линейно зависимым

Пусть заданы векторы в прямоугольной системе координат
тогда Скалярное произведение векторов.

Определение. Точка О называется полюсом, а луч l – полярной осью.
Суть задания какой- либо системы координат на плоскости состоит в том, чтобы каждой точке плоскости поставить в соответствие пару действительных чисел, определяющих положение этой точки на плоскост

Цилиндрическая и сферическая системы координат.
Как и на плоскости, в пространстве положение любой точки может быть определено тремя координатами в различных системах координат, отличных от декартовой прямоугольной системы. Цилиндрическая и сфер

Связь цилиндрической и декартовой прямоугольной системами координат.
Аналогично полярной системе координат на плоскости можно записать соотношения, связывающие между собой различные системы координат в пространстве. Для цилиндрической и декартовой прямоугольной сист

Условия параллельности и перпендикулярности плоскостей.
На основе полученной выше формулы для нахождения угла между плоскостями можно найти условия параллельности и перпендикулярности плоскостей.   Для того, чтобы плоскости были п

Условия параллельности и перпендикулярности прямых в пространстве.
// Чтобы две прямые были параллельны необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, т.е. их соответствующие координаты были пропорциональны.

Основные действия над матрицами.
Матрица может состоять как из одной строки, так и из одного столбца. Вообще говоря, матрица может состоять даже из одного элемента. Определение. Если число столбцов

Операция умножения матриц.
Определение: Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам: A×B = C;

Бесконечно большие функции и их связь с бесконечно малыми.
Определение. Предел функции f(x) при х®а, где а- число, равен бесконечности, если для любого числа М>0 существует такое число D>0, что неравенство

Определение. Точки максимума и минимума функции называются точками экстремума.
Теорема. (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х1 и точка х1 является точкой экстремума, то п

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги