рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Оценка неизвестного математического ожидания нормально распределенной с.в. при известном s

Оценка неизвестного математического ожидания нормально распределенной с.в. при известном s - раздел Математика, Теория вероятностей   Пусть Требуется Оценить Неизвестное Математическое Ожидание ...

 

Пусть требуется оценить неизвестное математическое ожидание а нормально распределенной с.в., причем предполагается что среднее квадратичное отклонение s известно. Предположим, что в результате наблюдений получен вариационный ряд (см. таблицу 4). Известно, что выборочное среднее также распределено по нормальному закону с параметрами , дисперсией , где - объем выборки. Зададим некоторую доверительную вероятность g (обычно g = 0.95 или g = 0.99). По формуле (31) для некоторого d > 0 (d - точность оценки) получаем:

(40)

Обозначим . Решая уравнение (для решения последнего пользуются таблицами) находим t. Далее очевидно, что точность оценки Откуда получаем Интервал

 

 

называется доверительным интервалом.

 

– Конец работы –

Эта тема принадлежит разделу:

Теория вероятностей

Теория вероятностей и математическая статистика..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Оценка неизвестного математического ожидания нормально распределенной с.в. при известном s

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Программа курса
  1. Случайные события. Виды случайных событий. Сумма, произведение случайных событий. Противоположные случайные события. 2. Основные формулы комбинаторики. Классическое опре

Вероятность суммы двух событий
  В случае классического определения вероятности дается способ ее вычисления. В общем случае дать способ вычисления вероятности конечно же нельзя. Тогда постулируют свойства вероятнос

Формула полной вероятности
Пусть событие А может произойти, когда происходит одно и только одно из событий H1, H2,…,H n (гипотезы). Тогда вероятность события А может быть

Вероятность появления хотя бы одного из n независимых событий
Пусть вероятность появления события События независимы в совокупности. Тогда вероят

Формула Бернулли
Формулы теории вероятностей имеют смысл только в случае, когда возможно повторение испытаний достаточно большое число раз. Пусть производится п независимых испытаний и вероятность появления

Математическое ожидание и дисперсия
Случайное событие, заключающееся в появлении того или иного числа, называется случайной величиной. Различают два вида случайных величин (с.в.): дискретные и непрерывные. Случайная вел

Дифференциальная функция распределения
  Введем в рассмотрение функцию распределения

Нормальный закон распределения
  Случайная величина называется распределенной по нормальному закону (нормальная с.в.), если ее дифференциальная функция распределения имеет следующий вид:

Интегральная теорема Муавра-Лапласа
  Необходимость изучения нормально распределенных с.в. вытекает из следующей центральной предельной теоремы Ляпунова. Если случайная величина Х представляет соб

Элементы математической статистики
  Математическая статистика разрабатывает способы сбора, группировки и анализа статистических данных, т.е. сведений, получаемых в результате наблюдения некоторой изучаемой случайной в

Генеральная и выборочная дисперсии
  Генеральным средним называется среднее арифметическое значений признака Х в генеральной совокупности (обозначение

Выборочное уравнение регрессии
Для выявления связи между двумя случайными величинами по наблюдаемым данным строят выборочное уравнение регрессии. Результаты наблюдения над двумя случайными величинами X Y приведены в табли

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги