рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Вероятность суммы двух событий

Вероятность суммы двух событий - раздел Математика, Теория вероятностей   В Случае Классического Определения Вероятности Дается Способ ...

 

В случае классического определения вероятности дается способ ее вычисления. В общем случае дать способ вычисления вероятности конечно же нельзя. Тогда постулируют свойства вероятностей случайных событий.

1. Предположим, что имеется некоторое множество случайных событий S:

а) U S, V S;

б) если А, В S, то и А + В S, S, А ·В S,т.е. мы всегда можем говорить о достоверном и невозможном событиях, о противоположных событиях, о сумме и произведении случайных событий.

2. Для любого случайного события А определено некоторое число р = р(А), которое мы называем его вероятностью, причем 0 р(А) 1.

3. р(U) = 1: вероятность достоверного события равна 1.

4. Если события А1, А2,…, Аn попарно несовместимы, то вероятность их суммы равна сумме вероятностей этих событий, т.е. если Аi × Аj= V при ij, то р(А1 + А2 +…+ An) = p(A1) + p(A2) +…+ p(An).

Все эти аксиомы совпадают с соответствующими свойствами классической вероятности, и в случае классического определения вероятности они могут быть доказаны. Из сформулированных аксиом можно легко получить формулы:

 

Р(А) + Р() = 1, р(V) = 0.

Также нетрудно доказать, что вероятность суммы двух событий равна сумме вероятностей этих событий без вероятности их совместного появления:

 

p(А + В) = р(А) + р(В) – р(АВ). (10)

 

Заметим, что эта формула не противоречит аксиоме 4, т.к., если события А и В несовместимы, то р(АВ) = 0.

Пример 7. Два стрелка выстрелили в цель по одному разу. Вероятность попадания в цель первым стрелком равна 0.9; вторым – 0.8. Найти вероятность поражения цели.

Решение. Пусть событие А – в цель попал первый стрелок, В – второй. Тогда событие В + А означает, что цель поражена:

 

Р(А + В) = р(А) + р(В) – р(АВ) = 0.8 + 0.9 – 0.8 × 0.9 = 0.98.

Эту задачу можно решить и другим способом:

 

 

 


– Конец работы –

Эта тема принадлежит разделу:

Теория вероятностей

Теория вероятностей и математическая статистика..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Вероятность суммы двух событий

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Программа курса
  1. Случайные события. Виды случайных событий. Сумма, произведение случайных событий. Противоположные случайные события. 2. Основные формулы комбинаторики. Классическое опре

Формула полной вероятности
Пусть событие А может произойти, когда происходит одно и только одно из событий H1, H2,…,H n (гипотезы). Тогда вероятность события А может быть

Вероятность появления хотя бы одного из n независимых событий
Пусть вероятность появления события События независимы в совокупности. Тогда вероят

Формула Бернулли
Формулы теории вероятностей имеют смысл только в случае, когда возможно повторение испытаний достаточно большое число раз. Пусть производится п независимых испытаний и вероятность появления

Математическое ожидание и дисперсия
Случайное событие, заключающееся в появлении того или иного числа, называется случайной величиной. Различают два вида случайных величин (с.в.): дискретные и непрерывные. Случайная вел

Дифференциальная функция распределения
  Введем в рассмотрение функцию распределения

Нормальный закон распределения
  Случайная величина называется распределенной по нормальному закону (нормальная с.в.), если ее дифференциальная функция распределения имеет следующий вид:

Интегральная теорема Муавра-Лапласа
  Необходимость изучения нормально распределенных с.в. вытекает из следующей центральной предельной теоремы Ляпунова. Если случайная величина Х представляет соб

Элементы математической статистики
  Математическая статистика разрабатывает способы сбора, группировки и анализа статистических данных, т.е. сведений, получаемых в результате наблюдения некоторой изучаемой случайной в

Генеральная и выборочная дисперсии
  Генеральным средним называется среднее арифметическое значений признака Х в генеральной совокупности (обозначение

Оценка неизвестного математического ожидания нормально распределенной с.в. при известном s
  Пусть требуется оценить неизвестное математическое ожидание а нормально распределенной с.в., причем предполагается что среднее квадратичное отклонение s известно. Пред

Выборочное уравнение регрессии
Для выявления связи между двумя случайными величинами по наблюдаемым данным строят выборочное уравнение регрессии. Результаты наблюдения над двумя случайными величинами X Y приведены в табли

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги