рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Формула Бернулли

Формула Бернулли - раздел Математика, Теория вероятностей Формулы Теории Вероятностей Имеют Смысл Только В Случае, Когда Возможно Повто...

Формулы теории вероятностей имеют смысл только в случае, когда возможно повторение испытаний достаточно большое число раз. Пусть производится п независимых испытаний и вероятность появления некоторого события А в каждом из испытаний равна р = р (А) и не зависит от номера испытания. Пусть q = 1 – p, тогда вероятность того, что в п независимых испытаниях событие А произойдет ровно т раз вычисляется по формуле Бернулли:

 

Рп(т) = × рт × qп-т. (14)

 

Пример 13. Играется матч между шахматистами X и Y. Вероятность того, что X выиграет каждую отдельную партию равна , вероятность выигрыша партии Y равна . Ничьих партий не бывает (т.е., если они происходят, то они не учитываются). Матч состоит из 6 партий. Найти вероятность выигрыша матча X, вероятность выигрыша матча Y и вероятность ничейного исхода.

Решение. Здесь число испытаний п = 6; р = , q = . Введем обозначения: Аi(I = 0,1,…, 6) – событие, заключающееся в том, что X выиграл i партий из 6. По условию задачи требуется найти р(А4 + А5 + А6) = р(А4) + р(А5) + р(А6) X выиграл не менее четырех партий (здесь вероятность суммы равна сумме вероятностей, т.к. слагаемые в скобках – несовместимые события). Далее,

 

р(А4) = р6(4) = × × = 15× = ,

р(А5) = р6(5) = × × = 6× = ,

р(А6) = р6(6) = × × = 1× = .

Тогда вероятность того, что X выиграет матч равна

Р(А4 + А5 + А6) = = 0.68.

Ничья происходит при счете ”3 -3”, т.е.

Р(А3) = р6(3) = × × = 20 × = = 0.22.

Вероятность выигрыша матча Y равна

 

Р(А0 + А1 + А2) = 1 – р(А3 + А4 + А5 + А6) = 1 – 0.68 – 0.22 = 0.1.

 

Интересно заметить, что вероятность того, что наиболее искусный игрок не будет выявлен после шести партий не мала (0.32).

Наивероятнейшее число появления события в серии из n испытаний определяется неравенством

(15)

 

где p – вероятность появления события в одном испытании, q - вероятность не появления события в одном испытании.

Пример 14. В одном из учебных заведений обучается 2920 студентов. Вероятность того, что день рождения наудачу взятого по списку студента приходится на определенный день года равна Найти наивероятнейшее число студентов, родившихся 1 января.

Решение. Имеем

следовательно,

Поскольку - целое число, то = 8.

 

 


 

– Конец работы –

Эта тема принадлежит разделу:

Теория вероятностей

Теория вероятностей и математическая статистика..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Формула Бернулли

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Программа курса
  1. Случайные события. Виды случайных событий. Сумма, произведение случайных событий. Противоположные случайные события. 2. Основные формулы комбинаторики. Классическое опре

Вероятность суммы двух событий
  В случае классического определения вероятности дается способ ее вычисления. В общем случае дать способ вычисления вероятности конечно же нельзя. Тогда постулируют свойства вероятнос

Формула полной вероятности
Пусть событие А может произойти, когда происходит одно и только одно из событий H1, H2,…,H n (гипотезы). Тогда вероятность события А может быть

Вероятность появления хотя бы одного из n независимых событий
Пусть вероятность появления события События независимы в совокупности. Тогда вероят

Математическое ожидание и дисперсия
Случайное событие, заключающееся в появлении того или иного числа, называется случайной величиной. Различают два вида случайных величин (с.в.): дискретные и непрерывные. Случайная вел

Дифференциальная функция распределения
  Введем в рассмотрение функцию распределения

Нормальный закон распределения
  Случайная величина называется распределенной по нормальному закону (нормальная с.в.), если ее дифференциальная функция распределения имеет следующий вид:

Интегральная теорема Муавра-Лапласа
  Необходимость изучения нормально распределенных с.в. вытекает из следующей центральной предельной теоремы Ляпунова. Если случайная величина Х представляет соб

Элементы математической статистики
  Математическая статистика разрабатывает способы сбора, группировки и анализа статистических данных, т.е. сведений, получаемых в результате наблюдения некоторой изучаемой случайной в

Генеральная и выборочная дисперсии
  Генеральным средним называется среднее арифметическое значений признака Х в генеральной совокупности (обозначение

Оценка неизвестного математического ожидания нормально распределенной с.в. при известном s
  Пусть требуется оценить неизвестное математическое ожидание а нормально распределенной с.в., причем предполагается что среднее квадратичное отклонение s известно. Пред

Выборочное уравнение регрессии
Для выявления связи между двумя случайными величинами по наблюдаемым данным строят выборочное уравнение регрессии. Результаты наблюдения над двумя случайными величинами X Y приведены в табли

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги