рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Генеральная и выборочная совокупности

Генеральная и выборочная совокупности - раздел Математика, Возникновение математики случайного относится к середине 18 века и связано с попыткой создания теории азартных игр, особенно в кости Пусть Требуется Изучить Данную Совокупность Объектов Относи­тельно Некоторого...

Пусть требуется изучить данную совокупность объектов относи­тельно некоторого признака. Например, рассматривая работу диспет­чера (продавца, парикмахера,...), можно исследовать: его загружен­ность, тип клиентов, скорость обслуживания, моменты поступления заявок и т. д. Каждый такой признак (и их комбинации) образует слу­чайную величину, наблюдения над которой мы и производим.

Совокупность всех подлежащих изучению объектов или возможных

результатов всех мыслимых наблюдений, производимых в неизменных условиях над одним объектом, называется генеральной совокупностью.

Более строго: генеральная совокупность — это с. в. Х(ω), заданная на пространстве элементарных событий Ώ, с выделенным в нем классом S подмножеств событий, для которых указаны их вероятности.

Зачастую проводить сплошное обследование, когда изучаются все объекты (например — перепись населения), трудно или дорого, экономически нецелесообразно (например — не вскрывать же каждую консервную банку для проверки качества продукции), а иногда невозможно. В этих случаях наилучшим способом обследования является выборочное наблюдение: выбирают из генеральной совокупности часть объектов («выборку») и подвергают их изучению.

Выборочной совокупностью (выборкой) называется совокупность объектов, отобранных случайным образом из генеральной совокупно совокупности.

Более строго: выборка — это последовательность Х12,…, Хn независимых одинаково распределенных с.в., распределение каждой из которых совпадает с распределением генеральной случайной величины.

Число объектов (наблюдений) в совокупности называется ее объёмом.

Конкретные значения выборки, полученные в результате наблюдений (испытаний), называют реализацией выборки и обозначают строчными буквами х1 , х2 ,…,хп.

Метод статистического исследования, состоящий в том, что на основе изучения выборочной совокупности делается заключение о всей генеральной совокупности, называется выборочным.

Для получения хороших оценок характеристик генеральной совокупности необходимо, чтобы выборка была репрезентативной (или представительной), т.е. достаточно полно представлять изучаемые признаки генеральной совокупности. Условием обеспечения репрезентативности выборки является, согласно закону больших чисел, соблюдение случайности отбора, т. е. все объекты генеральной совокупности должны иметь равные вероятности попасть в выборку.

Различают выборки с возвращением (повторные) и без возвращения (бесповторные). В первом случае отобранный объект возвращает в генеральную совокупность перед извлечением следующего; во втором — не возвращается. На практике чаще используется бесповторная выборка.

Заметим, если объем выборки значительно меньше объема генеральной совокупности, различие между повторной и бесповторной выборками очень мало, его можно не учитывать.

В зависимости от конкретных условий для обеспечения репрезентативности применяют различные способы отбора: простой, при котором из генеральной совокупности извлекают по одному объекту; типический, при котором генеральную совокупность делят на «типические»

части и отбор осуществляется из каждой части (например, мнение о референдуме спросить у случайно отобранных людей, разделенных по признаку пола, возраста,...); механический, при котором отбор произ­водится через определенный интервал (например, мнение спросить у каждого шестидесятого...); серийный, при котором объекты из гене­ральной совокупности отбираются «сериями», которые должны иссле­доваться при помощи сплошного обследования.

На практике пользуются сочетанием вышеупомянутых способов от­бора.

Пример 6.1.Десять абитуриентов проходят тестирование по матема­тике. Каждый из них может набрать от 0 до 5 баллов включительно. Пусть Xk — количество баллов, набранных k-м (к = 1,2,..., 10) аби­туриентом.

Тогда значения 0, 1, 2, 3, 4, 5 — все возможные количества бал­лов, набранных одним абитуриентом, — образуют генеральную сово­купность.

Выборка Х12,…, Х10 — результат тестирования 10 абитури­ентов.

Реализациями выборки могут быть следующие наборы чисел: {5, 3, 0, 1, 4, 2, 5, 4, 1, 5} или {4, 4, 5, 3, 3, 1, 5, 5, 2, 5} или {3, 4, 5, 0, 1, 2, 3, 4, 5, 4} и т.д.

– Конец работы –

Эта тема принадлежит разделу:

Возникновение математики случайного относится к середине 18 века и связано с попыткой создания теории азартных игр, особенно в кости

Теория вероятности как и другие науки возникла из потребностей практики Ее элементы были знакомы еще первобытным людям шансы убить зверя у двух... Возникновение математики случайного относится к середине века и связано с... Пример одной из ситуаций два игрока договорились играть в кости до тех пор пока одному не удастся выиграть три...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Генеральная и выборочная совокупности

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет теории вероятности
Любая наука изучает не сами явления, протекающие в природе, в обществе, а их математические модели, т.е. описание явлений при помощи набора строго определенных символов и операций над ними.

Действия над событиями
Введем основные операции над событиями; они полностью соответ­ствуют основным операциям над множествами. Суммой событий А и В называется событие С = А +

Статистическое определение вероятности
Для математического изучения случайного события необходимо ввести какую-либо количественную оценку события. Понятно, что одни события имеют больше шансов («более вероятны») наступить, чем дру­гие.

Элементы комбинаторики
Согласно классическому определению подсчет вероятности собы­тия А сводится к подсчету числа благоприятствующих ему исходов. Делают это обычно комбинаторными методами. Комбин

Геометрическое определение вероятности
    Геометрическое определение вероятности прим

Аксиоматическое определение вероятности
Аксиоматическое построение теории вероятностей создано в начале 30-х годов академиком А. Н. Колмогоровым. Аксиомы теории вероят­ностей вводятся таким образом, чтобы вероятность события обладала осн

Свойства вероятностей
Приведем ряд свойств вероятности, являющихся следствием акси­ом Колмогорова. С1. Вероятность невозможного события равна нулю, т.е. Р(Æ) =0.

Конечное вероятностное пространство
Пусть производится некоторый опыт (эксперимент), который имеет конечное число возможных исходов w1, w2, w3,.., wn. В этом случае Ώ = {

Условные вероятности
Пусть А и В — два события, рассматриваемые в данном опыте. На­ступление одного события (скажем, А) может влиять на возможность наступления другого (В). Для характеристики зависимости одн

Независимость событий
Из определения условной вероятности (п. 1.14) следует, что Р(А×В) = Р(А)×Р(ВçА)=Р(В)-Р(АçВ), (1.22) т. е. вероятность произведения

Вероятность суммы событий
Как известно (п. 1.11), вероятность суммы двух несовместных событии определяется аксиомой A3: ({А + В) = Р(А) + Р(В), А×В = Æ Выведем формулу суммы вероятностей двух совместных с

Формула полной вероятности
Одним из следствий совместного применения теорем сложения умножения вероятностей являются формулы полнойвероятности и Байеса. Напомним, что события А1, А2, …

Формула Байеса (теорема гипотез)
Следствием формулы (1.30) является формула Байеса или теорема гипотез. Она позволяет переоценить вероятности гипотез Hi, принятых до опыта и называе

Формула Бернулли
Простейшая задача, относящаяся к схеме Бернулли, состоит в определении вероятности того, что в п независимых испытаниях собы­тие А наступит т раз (0 £т £ n

Понятие случайной величины. Закон распределения случайной величины
Одним из важнейших понятий теории вероятностей (наряду со слу­чайным событием и вероятностью) является понятие случайной вели­чины. Под случайной величиной понимают величину, которая в резул

Закон распределения дискретной случайной величины. Многоугольник распределения
Пусть X — д. с. в., которая принимает значения x1, x2, x3,…,xn,… (множество этих значений конечно или счетно) с некоторой вероят­ностью pi

Функция распределения и ее свойства. Функция распределения дискретной случайной величины
Очевидно, ряд распределения с.в. может быть построен только для д.с. в.: для н. с. в. нельзя даже перечислить все ее возможные значения. Кроме того, как увидим позже (п. 2.3, 2.4), вероятность кажд

Математическое ожидание случайной величины
Математическим ожиданием (или средним значением) д. с. в. X, — имеющей закон распределения рi = Р{Х = xi}, i= 1,2, 3,... , n, назы­вается число, равное сумме произвед

Дисперсия
Дисперсией (рассеянием) с. в. X называется математическое ожи­дание квадрата ее отклонения от своего математического ожидания. Обозначается дисперсия через DX (или

Среднее квадратическое отклонение
Дисперсия DX имеет размерность квадрата св. X, что в сравни­тельных целях неудобно. Когда желательно, чтобы оценка разброса (рассеяния) имела размерность с.в., используют еще одну числовую характер

Мода и медиана. Моменты случайных величин. Асимметрия и эксцесс. Квантили
Модой д. с. в. X называется ее значение, принимаемое с наибольшей вероятностью по сравнению с двумя соседними значениями, обознача­ется через M0X. Для н.с.b. M0X — точ

Предмет математической статистики
Математическая статистика — раздел математики, в котором изучаются методы сбора, систематизации и обработки результатов наблюдений массовых случайных явлений для выявления

Статистическое распределение выборки.
Эмпирическая функция распределения/ Пусть изучается некоторая св. X. С этой целью над с. в. X про­изводится ряд независимых опытов (наблюдений). В каждом из этих опытов ве

Графическое изображение статистического распределения
Статистическое распределение изображается графически (для на­глядности) в виде так называемых полигона и гистограммы. Полигон, как правило, служит для изображения дискретного (т. е. варианты от­лич

Числовые характеристики статистического распределения
Для выборки можно определить ряд числовых характеристик, ана­логичным тем, что в теории вероятностей определялись для случайных величин (см. п. 2.5). Пусть статистическое распределение выб

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги