рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Графическое изображение статистического распределения

Графическое изображение статистического распределения - раздел Математика, Возникновение математики случайного относится к середине 18 века и связано с попыткой создания теории азартных игр, особенно в кости Статистическое Распределение Изображается Графически (Для На­Глядности) В Вид...

Статистическое распределение изображается графически (для на­глядности) в виде так называемых полигона и гистограммы. Полигон, как правило, служит для изображения дискретного (т. е. варианты от­личаются на постоянную величину) статистического ряда.

Полигоном частот называют ломаную, отрезки которой соединя­ют точки с координатами (х1, n1), (х2, n2), ... ,( хk, nk), полигоном частостей — с координатами (х1, p*1), (х2, p*2), …, (хk, p*k)-

Варианты (хi) откладываются на оси абсцисс, а частоты и, соот­ветственно, частости — на оси ординат.

Рис. 60

Пример 6.5. Для примера 6.2 (п. 6.3) полигон частостей имеет вид, изображенный на рис. 60.

Заметим, что p*1+p*2+…+ p*k =1.

Как видно, полигон частостей является статистическим аналогом многоугольника распределения (см. п. 2.2).

Для непрерывно распределенного признака (т. е. варианты могут отличаться один от другого на сколь угодно малую величину) можно построить полигон частот, взяв середины интервалов в качестве значений х1, х2,…,хk. Более употребительна так называемая гистограмма

Гистограммой частот (частостей) называют ступенчатую фигу­ру, состоящую из прямоугольников, основаниями которых служат ча­стичные интервалы длины h, а высоты равны отношению — плотность частоты (или - плотности частости).

Очевидно, площадь гистограммы частот равна объему выборки, площадь гистограммы частостей равна единице.

Пример 6.6. Используя условие и результаты примера 6.3 из п. 6.3 построить гистограмму частостей.

В данном случае длина интервала равна h = 6. Находим высоты hi прямоугольников: h1 = , h2 = , h3 = , h4 = , h5 = , h6 = .

Гистограмма частостей изображена на рис. 61.

Гистограмма частот является статистическим аналогом дифференциала функции распределения (плотности) f(x) с.в. X. Сумма

 

площадей прямоугольников равна единице

что соответствует условию

для плотности вероятностей f(x) (см. п. 2.4). На рис. 61 показана и плотность вероятностей f(x).

Если соединить середины верхних оснований прямоугольников от­резками прямой, то получим полигон того же распределения.

– Конец работы –

Эта тема принадлежит разделу:

Возникновение математики случайного относится к середине 18 века и связано с попыткой создания теории азартных игр, особенно в кости

Теория вероятности как и другие науки возникла из потребностей практики Ее элементы были знакомы еще первобытным людям шансы убить зверя у двух... Возникновение математики случайного относится к середине века и связано с... Пример одной из ситуаций два игрока договорились играть в кости до тех пор пока одному не удастся выиграть три...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Графическое изображение статистического распределения

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Предмет теории вероятности
Любая наука изучает не сами явления, протекающие в природе, в обществе, а их математические модели, т.е. описание явлений при помощи набора строго определенных символов и операций над ними.

Действия над событиями
Введем основные операции над событиями; они полностью соответ­ствуют основным операциям над множествами. Суммой событий А и В называется событие С = А +

Статистическое определение вероятности
Для математического изучения случайного события необходимо ввести какую-либо количественную оценку события. Понятно, что одни события имеют больше шансов («более вероятны») наступить, чем дру­гие.

Элементы комбинаторики
Согласно классическому определению подсчет вероятности собы­тия А сводится к подсчету числа благоприятствующих ему исходов. Делают это обычно комбинаторными методами. Комбин

Геометрическое определение вероятности
    Геометрическое определение вероятности прим

Аксиоматическое определение вероятности
Аксиоматическое построение теории вероятностей создано в начале 30-х годов академиком А. Н. Колмогоровым. Аксиомы теории вероят­ностей вводятся таким образом, чтобы вероятность события обладала осн

Свойства вероятностей
Приведем ряд свойств вероятности, являющихся следствием акси­ом Колмогорова. С1. Вероятность невозможного события равна нулю, т.е. Р(Æ) =0.

Конечное вероятностное пространство
Пусть производится некоторый опыт (эксперимент), который имеет конечное число возможных исходов w1, w2, w3,.., wn. В этом случае Ώ = {

Условные вероятности
Пусть А и В — два события, рассматриваемые в данном опыте. На­ступление одного события (скажем, А) может влиять на возможность наступления другого (В). Для характеристики зависимости одн

Независимость событий
Из определения условной вероятности (п. 1.14) следует, что Р(А×В) = Р(А)×Р(ВçА)=Р(В)-Р(АçВ), (1.22) т. е. вероятность произведения

Вероятность суммы событий
Как известно (п. 1.11), вероятность суммы двух несовместных событии определяется аксиомой A3: ({А + В) = Р(А) + Р(В), А×В = Æ Выведем формулу суммы вероятностей двух совместных с

Формула полной вероятности
Одним из следствий совместного применения теорем сложения умножения вероятностей являются формулы полнойвероятности и Байеса. Напомним, что события А1, А2, …

Формула Байеса (теорема гипотез)
Следствием формулы (1.30) является формула Байеса или теорема гипотез. Она позволяет переоценить вероятности гипотез Hi, принятых до опыта и называе

Формула Бернулли
Простейшая задача, относящаяся к схеме Бернулли, состоит в определении вероятности того, что в п независимых испытаниях собы­тие А наступит т раз (0 £т £ n

Понятие случайной величины. Закон распределения случайной величины
Одним из важнейших понятий теории вероятностей (наряду со слу­чайным событием и вероятностью) является понятие случайной вели­чины. Под случайной величиной понимают величину, которая в резул

Закон распределения дискретной случайной величины. Многоугольник распределения
Пусть X — д. с. в., которая принимает значения x1, x2, x3,…,xn,… (множество этих значений конечно или счетно) с некоторой вероят­ностью pi

Функция распределения и ее свойства. Функция распределения дискретной случайной величины
Очевидно, ряд распределения с.в. может быть построен только для д.с. в.: для н. с. в. нельзя даже перечислить все ее возможные значения. Кроме того, как увидим позже (п. 2.3, 2.4), вероятность кажд

Математическое ожидание случайной величины
Математическим ожиданием (или средним значением) д. с. в. X, — имеющей закон распределения рi = Р{Х = xi}, i= 1,2, 3,... , n, назы­вается число, равное сумме произвед

Дисперсия
Дисперсией (рассеянием) с. в. X называется математическое ожи­дание квадрата ее отклонения от своего математического ожидания. Обозначается дисперсия через DX (или

Среднее квадратическое отклонение
Дисперсия DX имеет размерность квадрата св. X, что в сравни­тельных целях неудобно. Когда желательно, чтобы оценка разброса (рассеяния) имела размерность с.в., используют еще одну числовую характер

Мода и медиана. Моменты случайных величин. Асимметрия и эксцесс. Квантили
Модой д. с. в. X называется ее значение, принимаемое с наибольшей вероятностью по сравнению с двумя соседними значениями, обознача­ется через M0X. Для н.с.b. M0X — точ

Предмет математической статистики
Математическая статистика — раздел математики, в котором изучаются методы сбора, систематизации и обработки результатов наблюдений массовых случайных явлений для выявления

Генеральная и выборочная совокупности
Пусть требуется изучить данную совокупность объектов относи­тельно некоторого признака. Например, рассматривая работу диспет­чера (продавца, парикмахера,...), можно исследовать: его загружен

Статистическое распределение выборки.
Эмпирическая функция распределения/ Пусть изучается некоторая св. X. С этой целью над с. в. X про­изводится ряд независимых опытов (наблюдений). В каждом из этих опытов ве

Числовые характеристики статистического распределения
Для выборки можно определить ряд числовых характеристик, ана­логичным тем, что в теории вероятностей определялись для случайных величин (см. п. 2.5). Пусть статистическое распределение выб

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги