рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Общие замечания.

Общие замечания. - раздел Математика, Конспект лекций: Начертальная геометрия   Пересечь Геометрические Фигуры – Значит Определить Их Общие Т...

 

Пересечь геометрические фигуры – значит определить их общие точки и линии. И грамотно обвести чертеж с учетом видимости. Для этого совершенно необходимо хорошее усвоение пройденных тем таких, как принадлежность, особенности вырожденных проекций и видимость конкурирующих точек. Понадобится и теорема о пересечении соосных поверхностей вращения, разговор о которых пойдет несколько позже.

4.2. Пересечение геометрических фигур, если одна из них – проецирующая.

 

Наиболее легкий вариант пересечения геометрических фигур, если хотя бы одна их этих фигур задана проецирующей. На пространственных моделях проецирования и на комплексных чертежах (Рис.36) хорошо видно, что одну из проекций результата пересечения долго искать не надо. Результат накладывается или полностью совпадает с вырожденной проекцией одной из пересекающихся фигур. На комплексном чертеже остается только построить вторую проекцию результата пересечения. Используя принадлежность результата пересечения к пересекающейся фигуре общего положения.

Рис.36

 


 

При пересечении прямой общего положения с проецирующей плоскостью (Рис.36а) горизонтальная проекция точки их пересечения – в месте пересечения проекции прямой с вырожденной проекцией плоскости. На комплексном чертеже остается построить недостающую проекцию точки пересечения, используя известное положение о принадлежности точки к прямой общего положения.

При пересечении двух плоскостей, одна из которых – проецирующая (Рис.36б), горизонтальная проекция линии пересечения совпадает с вырожденной проекцией плоскости. Недостающая проекция линии пересечения строится по двум точкам, используя положение о принадлежности прямой к плоскости (в данном случае – к плоскости общего положения).

На Рис.36в принципиального отличия от предыдущего примера нет. Кроме того, что проецирующая плоскость пересекается с криволинейной поверхностью по кривой линии. Для построения второй проекции которой необходимо использовать достаточно плотный каркас из точек.

В рассмотренных примерах определение видимости можно определять без привлечения конкурирующих точек. Достаточно сопоставить положение вырожденной проекции относительно проекции второй фигуры и (условно) проекции наблюдателя.

Пример 1 (Рис.37). Плоскость общего положения пересечь горизонтально проецирующими прямой и плоскостью .

Рис.37

 

Дано: о.п., , . ?:     Решение 1: 1). , 2). , 3). , 4). Видимость. Решение 2: 1). , 2). , 3). Видимость.

Прямая пересекает плоскость в точке , горизонтальная проекция которой совпадает с вырожденной проекцией прямой . Для построения фронтальной проекции искомой точки используем вспомогательную прямую, проходящую через саму точку , задав ее точкой 1 и направлением, параллельным к одной из прямых, принадлежащих плоскости . Для определения видимости фронтальной проекции прямой m обращаем внимание на горизонтальную плоскость проекций. Понятно, что верхняя часть этой линии находится за прямой , принадлежащей плоскости .

Следовательно, верхняя часть фронтальной проекции прямой – не видима.

Горизонтально проецирующая плоскость пересекает плоскость по линии , горизонтальная проекция которой совпадает с вырожденной проекцией плоскости . Для построения фронтальной проекции линии пересечения используем две ее точки: 2 и 3 на линиях и , принадлежащих плоскости . Для определения видимости фронтальной проекции плоскости общего положения обращаем внимание на горизонтальную плоскость проекций. По которой судим, что часть треугольника с вершиной для наблюдателя не видна. Следовательно, фронтальная проекция этой части треугольника не видима.

Пример 2 (Рис.38). Построить сечение пирамиды фронтально проецирующей плоскостью .

Рис.38

 

Дано: Пир. . _____________ ?:     Решение: 1). 2). 3). 4). 5). Видимость.

Форма сечения – треугольник. Вершины треугольника – результат пересечения трёх рёбер пирамиды с проецирующей плоскостью.

Обратившись к фронтальной плоскости проекций можно определить, что нижняя часть пирамиды находится под проецирующей плоскостью. Следовательно горизонтальная проекция нижней части пирамиды – не видима.


 

Дано: Кон. , Цил. . _________ ?: .

Пример 3 (Рис. 39). Построить линию пересечения конической поверхности с горизонтально проецирующим цилиндром .

Рис.39

 

Горизонтальная проекция линии пересечения совпадает с вырожденной проекцией цилиндрической поверхности. Остаётся построить фронтальную проекцию этой линии. Решив по сути дела задачу на принадлежность кривой линии к поверхности конуса при наличии ее одной проекции. Для этого на поверхности конуса необходимо задать каркас из прямолинейных образующих, построить точки пересечения линии с элементами каркаса и по фронтальным проекциям этих точек провести недостающую проекцию линии пересечения.

Видимость фронтальной проекции конуса определяется путем обращения к горизонтальной плоскости проекций.

– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций: Начертальная геометрия

Комплексный чертеж на примере изображения точки Геометрический аппарат проецирования и.. Основные геометрические.. Способы задания геометрических фигур..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Общие замечания.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

С О Д Е Р Ж А Н И Е
В В Е Д Е Н И Е.. 4 1. КОМПЛЕКСНЫЙ ЧЕРТЕЖ НА ПРИМЕРЕ ИЗОБРАЖЕНИЯ ТОЧКИ.. 6 1.1. Геометрический аппарат проецирования и метод Г. Монжа получения обратимых изображений. 6 1

В В Е Д Е Н И Е
  Для тех, кто решил получить высшее образование, совершенно необходимо усвоить основной язык общения на производстве. Это язык инженерной графики. Теория изображения пространственных

Геометрический аппарат проецирования и метод Г. Монжа получения обратимых изображений
  Рис.3 В начертательной геометрии и в черчении д

Комплексный чертеж точки
Как теперь перейти от объемной модели проецирования к плоскому комплексному чертежу? Для получения 2-х картинного комплексного чертежа (Рис.6) необходимо выполнить три этапа: 1. У

Конкурирующие точки
  Особый практический интерес вызывает относительное положение точек, когда они находятся на одном проецирующем луче. И в направлении проецирующего луча имеют общую для них проекцию.

Прямая линия, плоскость и многогранник
  Прямая линия может быть задана одним из двух способов (Рис13 и 14):

Кривая линия общего вида
  Ограничимся кривыми линиями общего вида. Под которыми следует понимать плоские и пространственные кривые, не имеющие определенно выраженного закона образования. Для задания таких ли

Кинематические поверхности
2.4(а). Линейчатые поверхности с двумя направляющими и плоскостью параллелизма:   При образовании таких поверхн

Общие понятия взаимопринадлежности
  Элементарная (основная) задача на принадлежность, без которой бесполезно пытаться решать любую задачу на ту же тему, - это задача на принадлежность точки к плоскости или к любой кри

Точка на линии
  Положение о том, что точка на прямой проецируется в точку на проекции этой прямой (одно из инвариантных свойств проецирования) справедливо и для кривой

Прямая и точка на плоскости
Рис.31 Пример 1 (Рис.31). Построить недостающие (горизонтальные

Точка и линия на поверхности.
  Напомним уже известное, что точка принадлежит поверхности, если она на линии, принадлежащей поверхности. Хорошо, если эта линия имеет простые проекции. В противном случае приходится

Конические сечения
Рис.40 Секущая плоскость, не проходящая через вершину конуса вр

Пересечение геометрических фигур с привлечением посредников
Сложнее решаются задачи на пересечение геометрических фигур, если ни одна из них не является проецирующей. В таких случаях трудно обойтись без привлечения третьих участников пересечения – так назыв

Метод проецирующих секущих плоскостей
Пример 1 (Рис.44). Построить точку пересечения прямой плоскостью .

Метод концентрических сфер
Метод концентрических сфер применяется для пересечения поверхностей вращения, у которых общая плоскость симметрии параллельна плоскости проекций. В этом случае сфера с центром в точке пересечения о

Частный случай теоремы Г.Монжа
(без доказательства) Если две поверхности вращения 2-го порядка(конусы и цилиндры)описаны вокруг общей сферы, то они пересекаются по двум линиям того же порядка. Это могут

Способ замены плоскостей проекций
При нежелательном расположении фигуры относительно заданных плоскостей проекций можно произвести замену этих плоскостей другими, относительно которых фигура заняла бы необходимое положение. При это

Способ вращения вокруг проецирующей прямой
В процессе вращения геометрической фигуры каждая ее точка описывает в пространстве окружность, плоскость которой перпендикулярна к оси вращения, а центр – в точке пересечения оси и этой плоскости (

Способ прямоугольного треугольника
Способ прямоугольного треугольника применяется в задачах, в которых требуется определить натуральную величину отрезка, разность координат концов отрезка, углы наклона его к плоскостям проекций и та

Параллельность прямых и плоскостей
Прямая параллельна плоскости, если она параллельна какой-либо прямой этой плоскости.

Общие понятия перпендикулярности.
Задачи на перпендикулярность – логически взаимно связаны. От плоского прямого угла до нормали к криволинейной поверхности (Рис.62). Без теоремы о проецировании прямого угла не построить перпендикул

Перпендикулярность прямых и плоскостей.
Рис.64 Пример 1 (Рис.64). Через точки

Линия наибольшего наклона на плоскости
Для начала представим себе материальную точку на наклонной плоскости , которая по к

Стандартная изометрия и диметрия
Стандартом для изометрии и диметрии (ГОСТ 2.317-60) предусмотрены картины осей, коэффициенты искажения по осям и масштаб изображения. Масштаб может быть натуральным (1:1) или приведенным, при котор

Направление большой оси эллипса должно быть направлено перпендикулярно к той аксонометрической оси, которая перпендикулярна к плоскости окружности.
Рис.76

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги