рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Конкурирующие точки

Конкурирующие точки - раздел Математика, Конспект лекций: Начертальная геометрия   Особый Практический Интерес Вызывает Относительное Положение ...

 

Особый практический интерес вызывает относительное положение точек, когда они находятся на одном проецирующем луче. И в направлении проецирующего луча имеют общую для них проекцию. Точки на одном проецирующем луче называются конкурирующими. Объяснение такому названию – в том, что в пространстве для наблюдателя одна из точек видима, другая – нет. И, соответственно, на чертеже: одна из проекций конкурирующих точек видима, проекция другой точки – невидима.


На пространственной модели проецирования (Рис.11) из двух конкурирующих точек и видима точка по двум взаимно дополняющим признакам. Судя по цепочке точка ближе к наблюдателю, чем точка . И, соответственно, – дальше от плоскости проекций . То есть .

Если видима сама точка , то видима и её проекция . По отношению к совпадающей с ней проекцией . (Для наглядности и при необходимости невидимые проекции точек принято заключать в скобки).

 

Рис.11 Рис.12

 

Уберем на модели точки и . Останутся их совпадающие проекции на плоскости и раздельные изображения – на . Условно оставим и фронтальную проекцию наблюдателя . Тогда по цепочке изображений можно будет судить о том, что и что видима и сама точка и её проекция .

Другой наблюдательиз двух конкурирующих точек и видит точкуи её проекцию . Поскольку общий проецирующий луч этих точек параллелен оси , то признак видимости конкурирующих точек и определяется неравенством .

Для примера рассмотрим две пары тех же конкурирующих точек на комплексном чертеже (Рис.12).

Судя по совпадающим проекциям сами точки инаходятся на одном проецирующем луче, параллельном оси . Значит сравнению подлежат координаты этих точек. Для этого используем фронтальную плоскость проекций с раздельными изображениями точек. В данном случае . Из этого следует, что видима проекция .

Точки и на том же комплексном чертеже находятся на одном проецирующем луче, параллельном оси . Поэтому из сравнения делаем вывод, что видима проекция .

Общее правило. Видимость для совпадающих проекций конкурирующих точек определяется сравнением координат этих точек в направлении общего проецирующего луча. Видима та проекция точки, у которой эта координата больше. При этом сравнение координат ведется на плоскости проекций с раздельными изображениями точек.

Задача определения видимости конкурирующих точек имеет большое практическое значение. Поскольку окончательная обводка чертежа геометрической фигуры производится с учетом видимости её элементов.

– Конец работы –

Эта тема принадлежит разделу:

Конспект лекций: Начертальная геометрия

Комплексный чертеж на примере изображения точки Геометрический аппарат проецирования и.. Основные геометрические.. Способы задания геометрических фигур..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Конкурирующие точки

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

С О Д Е Р Ж А Н И Е
В В Е Д Е Н И Е.. 4 1. КОМПЛЕКСНЫЙ ЧЕРТЕЖ НА ПРИМЕРЕ ИЗОБРАЖЕНИЯ ТОЧКИ.. 6 1.1. Геометрический аппарат проецирования и метод Г. Монжа получения обратимых изображений. 6 1

В В Е Д Е Н И Е
  Для тех, кто решил получить высшее образование, совершенно необходимо усвоить основной язык общения на производстве. Это язык инженерной графики. Теория изображения пространственных

Геометрический аппарат проецирования и метод Г. Монжа получения обратимых изображений
  Рис.3 В начертательной геометрии и в черчении д

Комплексный чертеж точки
Как теперь перейти от объемной модели проецирования к плоскому комплексному чертежу? Для получения 2-х картинного комплексного чертежа (Рис.6) необходимо выполнить три этапа: 1. У

Прямая линия, плоскость и многогранник
  Прямая линия может быть задана одним из двух способов (Рис13 и 14):

Кривая линия общего вида
  Ограничимся кривыми линиями общего вида. Под которыми следует понимать плоские и пространственные кривые, не имеющие определенно выраженного закона образования. Для задания таких ли

Кинематические поверхности
2.4(а). Линейчатые поверхности с двумя направляющими и плоскостью параллелизма:   При образовании таких поверхн

Общие понятия взаимопринадлежности
  Элементарная (основная) задача на принадлежность, без которой бесполезно пытаться решать любую задачу на ту же тему, - это задача на принадлежность точки к плоскости или к любой кри

Точка на линии
  Положение о том, что точка на прямой проецируется в точку на проекции этой прямой (одно из инвариантных свойств проецирования) справедливо и для кривой

Прямая и точка на плоскости
Рис.31 Пример 1 (Рис.31). Построить недостающие (горизонтальные

Точка и линия на поверхности
  Напомним уже известное, что точка принадлежит поверхности, если она на линии, принадлежащей поверхности. Хорошо, если эта линия имеет простые проекции. В противном случае приходится

Общие замечания
  Пересечь геометрические фигуры – значит определить их общие точки и линии. И грамотно обвести чертеж с учетом видимости. Для этого совершенно необходимо хорошее усвоение пройденных

Конические сечения
Рис.40 Секущая плоскость, не проходящая через вершину конуса вр

Пересечение геометрических фигур с привлечением посредников
Сложнее решаются задачи на пересечение геометрических фигур, если ни одна из них не является проецирующей. В таких случаях трудно обойтись без привлечения третьих участников пересечения – так назыв

Метод проецирующих секущих плоскостей
Пример 1 (Рис.44). Построить точку пересечения прямой плоскостью .

Метод концентрических сфер
Метод концентрических сфер применяется для пересечения поверхностей вращения, у которых общая плоскость симметрии параллельна плоскости проекций. В этом случае сфера с центром в точке пересечения о

Частный случай теоремы Г.Монжа
(без доказательства) Если две поверхности вращения 2-го порядка(конусы и цилиндры)описаны вокруг общей сферы, то они пересекаются по двум линиям того же порядка. Это могут

Способ замены плоскостей проекций
При нежелательном расположении фигуры относительно заданных плоскостей проекций можно произвести замену этих плоскостей другими, относительно которых фигура заняла бы необходимое положение. При это

Способ вращения вокруг проецирующей прямой
В процессе вращения геометрической фигуры каждая ее точка описывает в пространстве окружность, плоскость которой перпендикулярна к оси вращения, а центр – в точке пересечения оси и этой плоскости (

Способ прямоугольного треугольника
Способ прямоугольного треугольника применяется в задачах, в которых требуется определить натуральную величину отрезка, разность координат концов отрезка, углы наклона его к плоскостям проекций и та

Параллельность прямых и плоскостей
Прямая параллельна плоскости, если она параллельна какой-либо прямой этой плоскости.

Общие понятия перпендикулярности
Задачи на перпендикулярность – логически взаимно связаны. От плоского прямого угла до нормали к криволинейной поверхности (Рис.62). Без теоремы о проецировании прямого угла не построить перпендикул

Перпендикулярность прямых и плоскостей
Рис.64 Пример 1 (Рис.64). Через точки

Линия наибольшего наклона на плоскости
Для начала представим себе материальную точку на наклонной плоскости , которая по к

Стандартная изометрия и диметрия
Стандартом для изометрии и диметрии (ГОСТ 2.317-60) предусмотрены картины осей, коэффициенты искажения по осям и масштаб изображения. Масштаб может быть натуральным (1:1) или приведенным, при котор

Направление большой оси эллипса должно быть направлено перпендикулярно к той аксонометрической оси, которая перпендикулярна к плоскости окружности
Рис.76

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги