Свойства криволинейного интеграла 2 рода.

 

1. Линейность
а) свойство суперпозиции

б) свойство однородности .

Доказательство. Запишем интегральные суммы для интегралов в левых частях равенств. Так как в интегральной сумме число слагаемых конечно, используя свойство скалярного произведения, перейдем к интегральным суммам для правых частей равенств. Затем перейдем к пределу, по теореме о предельном переходе в равенстве получим желаемый результат.

 

2. Аддитивность.
Если,то =+.

Доказательство. Выберем разбиение области L так, чтобы ни один из элементов разбиения ( первоначально и при измельчении разбиения) не содержал одновременно как элементы L1, так и элементы L2. Это можно сделать по теореме существования (замечание к теореме). Далее проводится доказательство через интегральные суммы, как в п.1.

3. Ориентируемость.

= -

Доказательство. Интеграл по дуге –L, т..е. в отрицательном направлении обхода дуги есть предел интегральных сумм, в слагаемых которых вместо стоит (). Вынося «минус» из скалярного произведения и из суммы конечного числа слагаемых, переходя к пределу, получим требуемый результат.

Заметим, что свойство ориентируемости в криволинейном интеграле первого рода отсутствует. Зато в криволинейном интеграле второго рода отсутствуют свойства интегрирования неравенств, теорема об оценке и теорема о среднем, которые есть в криволинейном интеграле первого рода.