Теорема Абеля.

1) Пусть степенной ряд сходится в точке . Тогда он абсолютно сходится в интервале

, симметричном относительно .

2) Пусть степенной ряд расходится в точке . Тогда он расходится в области .

 

Доказательство.

1) Пусть степенной ряд сходится в точке , тогда числовой ряд сходится. Тогда по необходимому признаку сходимости ряда . Тогда .

Рассмотрим произвольное, но фиксированное .

Оценим ,

где .

По первому признаку сравнения числовых знакоположительных рядов ряд сходится в указанной области (сравнение с бесконечно убывающей геометрической прогрессией . Следовательно, в области степенной ряд абсолютно сходится.

 

2) Пусть степенной ряд расходится в точке . Рассмотрим . Если бы ряд сходился в точке x, то он по п. 1 доказательства сходился бы в точке . Противоречие.

 

Замечание. Для каждой точки x константа q(x) своя. Может не найтись константы, меньшей единицы и ограничивающей сверху константы q(x) для всех точек области V.

Поэтому абсолютная сходимость есть, но равномерной сходимости степенного ряда в области V не гарантируется.

Если такая константа найдется, то гарантируется равномерная сходимость ряда.