рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Решение системы линейных уравнений.

Решение системы линейных уравнений. - раздел Математика, Элементы теории множеств Понятие множества. Подмножество. Операции над множествами Определение 1. Система Линейных Уравнений Вида (1) ...

Определение 1. Система линейных уравнений вида

(1) , где , поле, называется системой m линейных уравнений с n неизвестными над полем , - коэффициенты при неизвестных, , , - свободные члены системы (1).

Определение 2. Упорядоченная n-ка (), где , называется решением системы линейных уравнений (1), если при замене переменной на каждое уравнение системы (1) превращается в верное числовое равенство.

Определение 3. Система линейных уравнений (1) называется совместной, если она имеет хотя бы одно решение. В противном случае система (1) называется несовместной.

Определение 4. Система линейных уравнений (1) называется определенной, если она имеет единственное решение. В противном случае система (1) называется неопределенной.

Система линейных уравнений

(есть решение) (нет решений)

совместнаянесовместная

(единственное решение) (не единственное решение)

определеннаянеопределенная

Определение 5. Система линейных уравнений над полем Р называется однородной, если все ее свободные члены равны нулю. В противном случае система называется неоднородной.

Рассмотрим систему линейных уравнений (1). Тогда однородная система вида называется однородной системой, ассоциированной с системой (1). Однородная система линейных уравнений всегда совместна, так как всегда имеет решение .

Для каждой системы линейных уравнений можно ввести в рассмотрение две матрицы - основную и расширенную.

Определение 6. Основной матрицей системы линейных уравнений (1) называется матрица, составленная из коэффициентов при неизвестных следующего вида: .

Определение 7. Расширенной матрицей системы линейных уравнений (1) называется матрица , полученная из матрицы путем присоединения к ней столбца свободных членов:

.

Определение 8. Элементарными преобразованиями системы линейных уравнений называются следующие:

1) умножение обеих частей некоторого уравнения системы на скаляр ;

2) прибавление к обеим частям одного уравнения системы соответствующих частей другого уравнения, умноженных на элемент ;

3) добавление или отбрасывание уравнения вида .

Определение 9. Две системы линейных уравнений над полем Р относительно переменных называются равносильными, если их множества решений совпадают.

Теорема 1. Если одна система линейных уравнений получена из другой с помощью элементарных преобразований, то такие системы равносильны.

Замечание 1. Удобно элементарные преобразования применять не к системе линейных уравнений, а к ее расширенной матрице.

– Конец работы –

Эта тема принадлежит разделу:

Элементы теории множеств Понятие множества. Подмножество. Операции над множествами

В школьном курсе математики рассматривались операции над числами При этом были установлен ряд свойств этих операций.. На ряду с операциями над числами в школьном курсе также рассматривались и.. Основной целью курса алгебры является изучение алгебр и алгебраических систем Курс алгебры находит обширное..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Решение системы линейных уравнений.

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Диаграммы Эйлера-Венна.
Как в повседневной жизни, так и научных исследованиях часто приходится рассматривать совокупности вещей, системы объектов и т.д. При этом во всех случаях подразумевают, что рассматривается некоторо

Свойства операций над множествами.
  Согласно определению 1, множества А и В равны в том и только том случае, когда А⊆В и В⊆А. Теорема 1. Пусть

Прямое (декартово) произведение множеств.
Определение 11. Прямым (декартовым) произведением множеств A и B называется множество, обозначаемое AB (читается

Бинарные отношения между множествами.
Определение 14. Бинарным отношением называется всякое множество упорядоченных пар. В математике при рассмотрении связи между объектами используют термин «отношение». Примерам

Фактормножество.
Определение 27. Бинарное отношение R на множестве А называется отношением эквивалентности, если оно рефлексивно, симметрично, транзитивно на множестве А. Опр

Упорядоченное множество.
Определение 30. Бинарное отношение R на множестве А называется отношением порядка, если оно антисимметрично и транзитивно на А. Определение 31. Би

Функция как бинарное отношение.
Определение 41. Бинарное отношение f между множествами A и B называется функциональным отношением, если из (a,b)

Теорема об ассоциативности произведения функций.
Определение 50. Пусть f: XY, g: YZ - функции. Произведением

Обратимое отображение.
Определение 52. Отображение называется тождественным (или единичным), если

Критерий обратимости функции.
Теорема 5. Пусть - функция. Функция f обратима f - биек

Метод математической индукции.
На любое натуральное число можно смотреть с двух точек зрения. Например, 3-три (количество), 3-третий (порядок). В курсе алгебры изучают порядковую теорию натуральных чисел. На множестве ℕ вв

Свойства бинарных операций.
    Определение 1. Бинарной алгебраической операцией на непустом множестве М называется закон или правило, по которому любым двум элементам множества М

Полугруппа с сокращением.
Определение 10. Непустое множество М с заданной на нем бинарной алгебраической операцией «∗» называется группоидом. Обозначается <M, ∗>. За

Простейшие свойства групп.
Определение 14. Непустое множество G, замкнутое относительно бинарной алгебраической операции «∗» называется группой, если выполняются следующие аксиомы (аксиомы группы):

Подгруппа. Критерий подгруппы.
Определение 20. Непустое подмножество Н группы G называется подгруппой группы G, если Н является группой относительно той же операции, что и группа G, и об

Гомоморфизмы и изоморфизмы групп.
Теорема 8. Пусть {Hi | i∈I} – некоторая совокупность подгрупп группы G. Тогда A=я

Простейшие свойства колец.
Определение 27. Непустое множество K с определенными на нем бинарными алгебраическими операциями сложения и умножения называется кольцом, если выполняются следующие аксиомы (ак

Гомоморфизмы и изоморфизмы колец.
Определение 34. Непустое подмножество H кольца K называется подкольцом кольца K, если H является кольцом относительно тех же операций, что и кольцо K

Простейшие свойства полей.
Определение 36. Множество Р, содержащее не менее двух элементов, замкнутое относительно операций «+» и «⋅», называется полем, если выполняются условия: 1) Р

Изоморфизм полей.
Определение 37. Непустое подмножество Н поля Р, содержащее не менее двух элементов, называется подполем поля Р, если Н является полем относительно т

Поля комплексных чисел.
В поле ℝ уравнение вида x2+1=0 не имеет решений. Поэтому возникает необходимость построить поле, которое было бы рас

Комплексного числа.
Пусть z=(a, b)∈ℂ, причем (x, 0)=x для любого x∈ℝ. Получим для комплексного числа z=(a, b) другую форму

Комплексного числа.
  Пусть z=a+bi - комплексное число, a, b∈ℝ. Изобразим число z точкой плоскости М(a, b).

В тригонометрической форме.
  Теорема 4. При умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются. Доказательство. Пусть z1

Формула Муавра.
  Сложение, вычитание, умножение и деление комплексных чисел удобно производить в алгебраической форме. Однако, возведение в степень и извлечение корня степени n≥3

Формула Муавра.
  Определение 11. Пусть n∈ℕ. Корнем n-й степени из комплексного числа z называется комплексное число z1 такое, что z1

Первообразные корни.
По теореме 7, корень n-ой степени из единицы имеет ровно n значений. Так как 1=1⋅(cos 0+isin 0), то ,

Кольцо многочленов от одной переменной.
Из школьного курса математики и из курса математического анализа известно, что многочлен есть целая рациональная функция вида f(x)=a0+a1x+a2

Свойства степени многочлена.
Определение 19. Пусть K - ассоциативно-коммутативное кольцо с единицей, (

Над областью целостности.
Теорема 13. Если K – область целостности, то K[х] - область целостности. Доказательство. Пусть K – область целостности. Покажем, что

Теорема Безу. Корни многочлена.
Определение 20. Пусть K - ассоциативно-коммутативное кольцо с единицей. Говорят, что многочлен делится на многочлен

Многочлена над областью целостности.
  Теорема 15. Пусть K – область целостности, f(x)=а0+а1х+а2х2+…+аnxn

Равенство многочленов.
Определение 23. Пусть ,

Теорема о делении с остатком для многочленов.
Теорема 17. Пусть F – поле, f(x), g(x)F[x], g(x)

Разложение многочлена
по степеням (х-с). Пусть F - поле, f(x)=a0xn+a1xn-1+…+an-1x+a

Формальная производная многочлена.
Определение 27. Пусть F - поле, f(x)F, f(x

Основная теорема алгебры.
Определение 27. Множество М называется числовым, если Мℂ. Определение 28. Поле

Матрица ступенчатого вида.
Определение 10. Матрицей размера m×n над полем Р называется прямоугольная таблица, состоящая из n строк и m столбцов, следующего вида:

Метод последовательного исключения неизвестных
(метод Гаусса). Рассмотрим один из основных методов решения систем линейных уравнений, который называется методом последовательного исключения неизвестных, или инач

И их основные свойства.
1. Сложение матриц. Определение 16. Пусть A=(aij), B=(bij) - матрицы размера m×n над полем Р. Суммой

Матричные уравнения.
Определение 22. Матрица n-го порядка вида называется единичной матрицей. Замечание 9. Если А –

Теорема о четности перестановки.
Определение 27. Пусть М={1,2,…,n}. Перестановкой на множестве М или перестановкой n-й степени называется множество М с заданным расположением его эл

Определители второго и третьего порядков.
Пусть А=- матрица n-го порядка над полем Р. Из элементов матрицы А будем составлять всевозможные произ

Связь алгебраических дополнений с минорами.
Пусть Δ = = . Определение 31. Если в определителе Δ сгр

Определитель произведения матриц.
Теорема 9. Пусть А и В – матрицы n-го порядка над полем P. Тогда |AB|=|A|∙|B|, т.е. определитель произведения матриц равен произведению определителей

Формула для вычисления обратной матрицы.
Теорема 10. Пусть A=- матрица n-го порядка над полем P. Если определитель

Формулы Крамера.
Теорема 11. Пусть (1) - система n линейных уравнений с n неизвестными над полем P, А=

Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • Популярное
  • Облако тегов
  • Здесь
  • Временно
  • Пусто
Теги