рефераты конспекты курсовые дипломные лекции шпоры

Реферат Курсовая Конспект

Основные понятия теории вероятностей. Случайное событие. Вероятность. Статистическая вероятность. Геометрическая вероятность. Основные формулы комбинаторики

Основные понятия теории вероятностей. Случайное событие. Вероятность. Статистическая вероятность. Геометрическая вероятность. Основные формулы комбинаторики - раздел Математика, 1.основные Понятия Теории Вероятностей. Случайное Событие. Вероятность. Стати...

1.Основные понятия теории вероятностей. Случайное событие. Вероятность. Статистическая вероятность. Геометрическая вероятность. Основные формулы комбинаторики.

Случайные события

Случайные события бывают 3-х видов:

1.Невозможные. Обозначение: V

2.Достоверные.

3.Случайные.

Невозможными называют события, которые никогда не произойдут при осуществлении некоторых совокупных условий.

Достоверные события – это события, которые всегда произойдут при осуществлении совокупных условий.

Случайное событие, называют, которое может произойти или не может произойти при осуществлении совокупных условий.

События обозначаются заглавными буквами латинского алфавита и т.д.

2 события А и В называются несовместные, если появление одного исключает появление другого. А-попадание В-промах

Несколько событий образуют полную группу, если в результате испытания произойдёт, хотя бы одно из них.

2 события называют равновозможными, если ни одно из них не является более возможным, чем другое.

Свойство вероятности

1. Вероятность достоверного события равна 1.

2. Вероятность невозможного события равна 0.

3.Вероятность случайного события удовлетворяет неравенству 0<P(A)<1

Статистическая вероятность

При статистическом определении в качестве вероятности события принимают его относительную частоту.

где m - число испытаний, в которых событие A наступило, n - общее число произведённых испытаний.

Определение вероятности события

P(A)=m/n, где m – число элементарных исходов испытания, благоприятствующих появлению… Геометрическое определение вероятности. Пусть отрезок l составляет часть отрезка L. На отрезке L наудачу поставлена…

Аксиомы вероятностей.

1. Вероятность любого события заключена между нулем и единицей: (1.1) 2. Если A и B несовместные события, то

Теорема сложения вероятностей

Р(А + В) = Р(А) + Р(В). Следствие. Вероятность появления одного из нескольких попарно несовместных… Р(А1+А2+...+Аn) = P(A1) + Р(А2) +…+ Р(Аn).

Теорема умножения вероятностей

Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:

Р(АВ) = Р(А)∙РA(В).

В частности, для независимых событий

P(АВ) = Р(А)∙Р(В),

т. е. вероятность совместного появления двух независимых событий равна произведению вероятностей этих событий.

 

4. Повторение испытаний. Схема Бернулли. Локальная и интегральная теоремы Лапласа.

Повторение испытаний

  где - вероятность появления события A ровно k раз при n независимых испытаниях; p - вероятность появления события A…

Формула Бернулли

где q = 1 – p. Вероятность того, что в n испытаниях событие наступит: а) менее m раз; б)… Pn(0) + Pn(1) +…+ Pn(m – 1);

Локальная и интегральная теорема Муавра-Лапласа

Здесь , ,

Формула полной вероятности

Вероятность события А, которое может наступить лишь при появлении одного из несовместных событий (гипотез) H1, H2, …, Hn образующих полную группу, равна сумме произведений вероятностей каждой из гипотез на соответствующую условную вероятность события A:

где .

Формула Байеса

Пусть событие А может наступить лишь при условии появления одного из несовместных событий (гипотез) H1, H2, …,Hn, которые образуют полную группу событий. Если событие А уже произошло, то вероятности гипотез могут быть переоценены по формулам Байеса

где

 

6. Случайные величины. Закон распределения. Ряд распределения дискретной случайной величины. Смешанная случайная величина.

Определение и классификация случайных величин.

Под случайной величиной понимается величина, которая в результате опыта со случайным исходом принимает то или иное значение. Возможные значения случайной величины образуют множество Ξ, которое называется множеством возможных значений случайной величины. Обозначения случайной величины: X, Y, Z; возможные значения случайной величины: x, y, z.

В зависимости от вида множества Ξ случайные величины могут быть дискретными и недискретными. СВ Х называетсядискретной, если множество ее возможных значений Ξ – счетное или конечное. Если множество возможных значений СВ несчетно, то такая СВ является недискретной.

В теоретико-множественной трактовке основных понятий теории вероятностей случайная величина Х есть функция элементарного события: X=φ(ω), где ω – элементарное событие, принадлежащее пространству Ω. При этом множество Ξ возможных значений СВ Х состоит из всех значений, которые принимает функция φ(ω).

Законом распределения СВ называется любое правило (таблица, функция), позволяющее находить вероятности всевозможных событий, связанных со случайной величиной. (То есть, всякое соотношение, устанавливающее связь между возможными значениями СВ и их вероятностями.)

СВ будет полностью описана с вероятностной точки зрения, если мы зададим это распределение, т.е. в точности укажем, какой вероятностью обладает каждое событие. Про случайную величину мы будем говорить, что она подчинена данному закону распределения.

Ряд распределения дискретной случайной величины.

Ряд распределения записывается в виде таблицы: X x1 x2 … xn … P p1 p2 … Так как события {X=x1}, {X=x2}, … несовместны и образуют полную группу, то…

Смешанная случайная величина.

На тех участках, где F(x) непрерывна, вероятность каждого отдельного значения случайной величины равна нулю. Вероятность тех значений, где функция… 7. Функция распределения случайной величины и ее свойства. Функцией распределения вероятностей F(x) случайной величины Х в точке х называется вероятность того, что в результате…

Плотность распределения системы случайных величин.

Рассмотрим на плоскости x0y прямоугольник ΔRxy, примыкающий к точке (x,y), с размерами Δx, Δy и найдем вероятность попадания в него… . Будем неограниченно уменьшать оба размера прямоугольника Δx→∞, Δy→∞ и вычисляем…

Условные законы распределения системы случайных величин.

f(x/y) = f(x, y)/fу(y), fу (y)¹ 0; f(y/x) = f(x, y)/fх(x), fх (x)¹ 0. (10.17) ; .

Регрессия

Используя формулы для вычисления числовых характеристик случайных величин можно вычислить и условные числовые характеристики, заменив безусловные… и (11.13) Условное математическое ожидание СВ Y при заданном X=x: M[Y/x]=my/x называется регрессией Y на x; аналогично…

Числовые характеристики функции случайного аргумента.

Если Х – дискретная случайная величина и известен ее ряд распределения имеет вид: Xi x1 x2 … xn pi … Определяем вероятности появления различных значений случайной величины У … Тогда математическое ожидание случайной величины Y определяется так:

Теорема Хинчина 1

Пусть -- последовательность независимых одинаково распределенных случайных величин, у которых существует математическое ожидание: . Тогда

Закон больших чисел Бернулли.

Закон больших чисел в форме Бернулли состоит в следующем: с вероятностью,… иными словами, при неограниченном увеличении числа n опытов частота m/n события А сходится по вероятности к Р(А). …

– Конец работы –

Используемые теги: основные, понятия, Теории, вероятностей, Случайное, СОБЫТИЕ, вероятность, статистическая, вероятность, Геометрическая, вероятность, основные, формулы, комбинаторики0.158

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Основные понятия теории вероятностей. Случайное событие. Вероятность. Статистическая вероятность. Геометрическая вероятность. Основные формулы комбинаторики

Что будем делать с полученным материалом:

Если этот материал оказался полезным для Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Еще рефераты, курсовые, дипломные работы на эту тему:

Случайные величины и способы их описания. Основные понятия теории вероятности, применяемые при испытаниях РЭСИ
Наиболее широко используются математические ожидания: • среднее время безотказной работы Т; • среднее время восстановления Тв; • среднее время… Тв ное FB(&#964;)- вероятность восстановления работоспособ- ности … Сохраня- Время Нормальное Те же, что и Тс- среднее емость хранения Логарифмичес- для восстанав- время до потери…

Лекция. Работа в Microsoft Excel 2010 Лекция посвящена основам вычислений с использованием формул в Microsoft Excel 2010. 1. Даны определения основных понятий, рассмотрена структура формулы
Операторы сравнения... Операторы сравнения используются для сравнения двух значений Результатом... Текстовый оператор конкатенации...

КОНСПЕКТ ЛЕКЦИЙ ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ ВЕРОЯТНОСТЕЙ И СТАТИСТИКИ, ИСПОЛЬЗУЕМЫЕ В ЭКОНОМЕТРИКЕ
КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ... ФИНАНСОВО ЭКОНОМИЧЕСКИЙ ИНСТИТУТ... Кафедра статистики и эконометрики...

РАЗДЕЛ I. ОБЩИЕ ОСНОВЫ ТЕОРИИ И МЕТОДИКИ ФИЗИЧЕСКОЙ КУЛЬТУРЫ ВВЕДЕНИЕ В ТЕОРИЮ И МЕТОДИКУ ФИЗИЧЕСКОЙ КУЛЬТУРЫ Основные понятия теории и методики физической культуры
РАЗДЕЛ I ОБЩИЕ ОСНОВЫ ТЕОРИИ И МЕТОДИКИ... ФИЗИЧЕСКОЙ КУЛЬТУРЫ... ВВЕДЕНИЕ В ТЕОРИЮ И МЕТОДИКУ ФИЗИЧЕСКОЙ КУЛЬТУРЫ...

Элементы статистики, комбинаторики и теории вероятностей в основной школе
О необходимости изучения в школе элементов теории вероятностей и статистики речь идет очень давно. Ведь именно изучение и осмысление теории вероятностей и статистических проблем… Современная концепция школьного математического образования ориентирована, прежде всего, на учет индивидуальности…

Тема № 1. Предмет, задачи, основные категории и понятия теории статистики
Пример... При контрольной проверке качества хлебобулочных изделий проведено ное... На основе полученных в выборке данных нужно установить возможные значения доли стандартных изделий и среднего веса...

Лекции по курсу Информатика Лекция 1. Основные понятия и методы теории информатики и кодирования. Информатика как научная дисциплина. Понятие информации и информационных процессов
Лекция Основные понятия и методы теории информатики и кодирования... Информатика как научная дисциплина... Понятие информации и информационных процессов...

Элементы статистической термодинамики. Равновесие закрытой системы в изохорно-изотермических условиях. Макро и микросостояния. Канонический ансамбль. Энтропия и вероятность. Распределение Больцмана. Статистические суммы
Для начала неплохо ещё было бы, чтобы они могли каким-то способом перемешиваться. Если система пребывает в равновесии, то и перемешивание её… Он не может выделить тех различий, которые неизбежны при перемешивании, и ему… Конечно же, квантовое фазовое пространство жто дискретное абстрактное математическое множество. Удивительно, что…

Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной школы
Выводы по главе 1 Глава 2. Методика обучения школьников основам комбинаторики, теории вероятностей и математической статистики в рамках профильной… Библиографический списокПриложения Глава 1 Теоретические аспекты обучения… Оно является важнейшим средством дифференциации и индивидуализации обучения, позволяющим за счет изменений в…

Тема 1. Основные понятия и категории статистической науки
На сайте allrefs.net читайте: Тема 1. Основные понятия и категории статистической науки. ТЕОРИЯ...

0.052
Хотите получать на электронную почту самые свежие новости?
Education Insider Sample
Подпишитесь на Нашу рассылку
Наша политика приватности обеспечивает 100% безопасность и анонимность Ваших E-Mail
Реклама
Соответствующий теме материал
  • Похожее
  • По категориям
  • По работам